瀏覽代碼

Refactor and adds ne script (WIP) for plotting single transmissions

master
langspielplatte 2 年之前
父節點
當前提交
16b9929dcb
共有 2 個檔案被更改,包括 273 行新增6 行删除
  1. +273
    -0
      plot_single_transmission_timeline.py
  2. +0
    -6
      plot_transmission_timeline.py

+ 273
- 0
plot_single_transmission_timeline.py 查看文件

@@ -0,0 +1,273 @@
#!/usr/bin/env python3
import multiprocessing
import os
from argparse import ArgumentParser
from math import ceil
from time import sleep

import matplotlib
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits import axisartist
from mpl_toolkits.axes_grid1 import host_subplot



def csv_to_dataframe(csv_list, dummy):

global n
global frame_list

transmission_df = None

for csv in csv_list:
tmp_df = pd.read_csv(
"{}{}".format(args.pcap_csv_folder, csv),
dtype=dict(is_retranmission=bool, is_dup_ack=bool),
)
tmp_df["datetime"] = pd.to_datetime(tmp_df["datetime"]) - pd.Timedelta(hours=1)
tmp_df = tmp_df.set_index("datetime")
tmp_df.index = pd.to_datetime(tmp_df.index)
if transmission_df is None:
transmission_df = tmp_df
else:
transmission_df = pd.concat([transmission_df, tmp_df])

n.value += 1

frame_list.append(transmission_df)


from itertools import islice

def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())


def plot_cdf(dataframe, column_name):
stats_df = dataframe \
.groupby(column_name) \
[column_name] \
.agg("count") \
.pipe(pd.DataFrame) \
.rename(columns={column_name: "frequency"})

# PDF
stats_df["PDF"] = stats_df["frequency"] / sum(stats_df["frequency"])

# CDF
stats_df["CDF"] = stats_df["PDF"].cumsum()
stats_df = stats_df.reset_index()

stats_df.plot(x=column_name, y=["CDF"], grid=True)


if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.")
parser.add_argument("--save", default=None, help="Location to save pdf file.")
parser.add_argument(
"-c",
"--cores",
default=1,
type=int,
help="Number of cores for multiprocessing.",
)
parser.add_argument(
"-i",
"--interval",
default=10,
type=int,
help="Time interval for rolling window.",
)

args = parser.parse_args()
manager = multiprocessing.Manager()
n = manager.Value("i", 0)
frame_list = manager.list()
jobs = []

# load all pcap csv into one dataframe
pcap_csv_list = list()
for filename in os.listdir(args.pcap_csv_folder):
if filename.endswith(".csv") and "tcp" in filename:
pcap_csv_list.append(filename)

parts = chunk(pcap_csv_list, ceil(len(pcap_csv_list) / args.cores))
print("Start processing with {} jobs.".format(args.cores))
for p in parts:
process = multiprocessing.Process(target=csv_to_dataframe, args=(p, "dummy"))
jobs.append(process)

for j in jobs:
j.start()

print("Started all jobs.")
# Ensure all the processes have finished
finished_job_counter = 0
working = ["|", "/", "-", "\\", "|", "/", "-", "\\"]
w = 0
while len(jobs) != finished_job_counter:
sleep(1)
print(
"\r\t{}{}{}\t Running {} jobs ({} finished). Processed {} out of {} pcap csv files. ({}%) ".format(
working[w],
working[w],
working[w],
len(jobs),
finished_job_counter,
n.value,
len(pcap_csv_list),
round((n.value / len(pcap_csv_list)) * 100, 2),
),
end="",
)
finished_job_counter = 0
for j in jobs:
if not j.is_alive():
finished_job_counter += 1
if (w + 1) % len(working) == 0:
w = 0
else:
w += 1
print("\r\nSorting table...")

transmission_df = pd.concat(frame_list)
frame_list = None
transmission_df = transmission_df.sort_index()

print("Calculate goodput...")

#print(transmission_df)

# key for columns and level for index
transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum")
transmission_df["goodput"] = transmission_df["goodput"].apply(
lambda x: ((x * 8) / args.interval) / 10**6
)

transmission_df["goodput_rolling"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
lambda x: ((x * 8) / args.interval) / 10 ** 6
)

# set meta values and remove all not needed columns
cc_algo = transmission_df["congestion_control"].iloc[0]
cc_algo = cc_algo.upper()
transmission_direction = transmission_df["direction"].iloc[0]

transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling"])

# read serial csv
serial_df = pd.read_csv(args.serial_file)
serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1)
serial_df = serial_df.set_index("datetime")
serial_df.index = pd.to_datetime(serial_df.index)

transmission_df = pd.merge_asof(
transmission_df,
serial_df,
tolerance=pd.Timedelta("1s"),
right_index=True,
left_index=True,
)

# transmission timeline

scaley = 1.5
scalex = 1.0
fig, ax = plt.subplots(figsize=[6.4 * scaley, 4.8 * scalex])
plt.title("{} with {}".format(transmission_direction, cc_algo))
fig.subplots_adjust(right=0.75)

twin1 = ax.twinx()
twin2 = ax.twinx()
# Offset the right spine of twin2. The ticks and label have already been
# placed on the right by twinx above.
twin2.spines.right.set_position(("axes", 1.2))


# create list fo color indices
transmission_df["index"] = transmission_df.index
color_dict = dict()
color_list = list()
i = 0
for cell_id in transmission_df["cellID"]:
if cell_id not in color_dict:
color_dict[cell_id] = i
i += 1
color_list.append(color_dict[cell_id])

transmission_df["cell_color"] = color_list
color_dict = None
color_list = None

cmap = matplotlib.cm.get_cmap("Set3")
for c in transmission_df["cell_color"].unique():
bounds = transmission_df[["index", "cell_color"]].groupby("cell_color").agg(["min", "max"]).loc[c]
ax.axvspan(bounds.min(), bounds.max(), alpha=0.3, color=cmap.colors[c])

p1, = ax.plot(transmission_df["goodput_rolling"], "-", color="blue", label="goodput")
p2, = twin1.plot(transmission_df["downlink_cqi"], "--", color="green", label="CQI")
p3, = twin2.plot(transmission_df["ack_rtt"], "-.", color="red", label="ACK RTT")

ax.set_xlim(transmission_df["index"].min(), transmission_df["index"].max())
ax.set_ylim(0, 500)
twin1.set_ylim(0, 15)
twin2.set_ylim(0, 1)

ax.set_xlabel("Time")
ax.set_ylabel("Goodput")
twin1.set_ylabel("CQI")
twin2.set_ylabel("ACK RTT")

ax.yaxis.label.set_color(p1.get_color())
twin1.yaxis.label.set_color(p2.get_color())
twin2.yaxis.label.set_color(p3.get_color())

tkw = dict(size=4, width=1.5)
ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
twin1.tick_params(axis='y', colors=p2.get_color(), **tkw)
twin2.tick_params(axis='y', colors=p3.get_color(), **tkw)
ax.tick_params(axis='x', **tkw)

#ax.legend(handles=[p1, p2, p3])

if args.save:
plt.savefig("{}timeline_plot.pdf".format(args.save))
else:
plt.show()

#goodput cdf
plt.clf()

print("Calculate and polt goodput CDF...")
plot_cdf(transmission_df, "goodput")
plt.xlabel("goodput [mbps]")
plt.ylabel("CDF")
plt.legend([cc_algo])
plt.title("{} with {}".format(transmission_direction, cc_algo))

if args.save:
plt.savefig("{}{}_cdf_plot.pdf".format(args.save, "goodput"))
else:
plt.show()

# rtt cdf
plt.clf()

print(transmission_df["ack_rtt"])
print("Calculate and polt rtt CDF...")
plot_cdf(transmission_df, "ack_rtt")
plt.xlabel("ACK RTT [s]")
plt.ylabel("CDF")
plt.xscale("log")
plt.legend([cc_algo])
plt.title("{} with {}".format(transmission_direction, cc_algo))

if args.save:
plt.savefig("{}{}_cdf_plot.pdf".format(args.save, "ack_rtt"))
else:
plt.show()

+ 0
- 6
plot_transmission_timeline.py 查看文件

@@ -65,15 +65,9 @@ def plot_cdf(dataframe, column_name):

if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("-f", "--gps_file", required=True, help="GPS csv file.")
parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.")
parser.add_argument("--save", default=None, help="Location to save pdf file.")
parser.add_argument(
"--show_providerinfo",
default=False,
help="Show providerinfo for map tiles an zoom levels.",
)
parser.add_argument(
"-c",
"--cores",

Loading…
取消
儲存