| @@ -14,7 +14,7 @@ from mpl_toolkits.axes_grid1 import host_subplot | |||
| def csv_to_dataframe(csv_list, dummy): | |||
| def csv_to_dataframe(csv_list, folder, dummy): | |||
| global n | |||
| global frame_list | |||
| @@ -23,7 +23,7 @@ def csv_to_dataframe(csv_list, dummy): | |||
| for csv in csv_list: | |||
| tmp_df = pd.read_csv( | |||
| "{}{}".format(args.pcap_csv_folder, csv), | |||
| "{}{}".format(folder, csv), | |||
| dtype=dict(is_retranmission=bool, is_dup_ack=bool), | |||
| ) | |||
| tmp_df["datetime"] = pd.to_datetime(tmp_df["datetime"]) - pd.Timedelta(hours=1) | |||
| @@ -97,14 +97,14 @@ if __name__ == "__main__": | |||
| # load all pcap csv into one dataframe | |||
| pcap_csv_list = list() | |||
| for filename in os.listdir(args.pcap_csv_folder): | |||
| for filename in os.listdir(f): | |||
| if filename.endswith(".csv") and "tcp" in filename: | |||
| pcap_csv_list.append(filename) | |||
| parts = chunk(pcap_csv_list, ceil(len(pcap_csv_list) / args.cores)) | |||
| print("Start processing with {} jobs.".format(args.cores)) | |||
| for p in parts: | |||
| process = multiprocessing.Process(target=csv_to_dataframe, args=(p, "dummy")) | |||
| process = multiprocessing.Process(target=csv_to_dataframe, args=(p, f, "dummy")) | |||
| jobs.append(process) | |||
| for j in jobs: | |||
| @@ -165,19 +165,19 @@ if __name__ == "__main__": | |||
| transmission_direction = transmission_df["direction"].iloc[0] | |||
| # read serial csv | |||
| serial_df = pd.read_csv(args.serial_file) | |||
| serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1) | |||
| serial_df = serial_df.set_index("datetime") | |||
| serial_df.index = pd.to_datetime(serial_df.index) | |||
| serial_df.sort_index() | |||
| transmission_df = pd.merge_asof( | |||
| transmission_df, | |||
| serial_df, | |||
| tolerance=pd.Timedelta("1s"), | |||
| right_index=True, | |||
| left_index=True, | |||
| ) | |||
| #serial_df = pd.read_csv(args.serial_file) | |||
| #serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1) | |||
| #serial_df = serial_df.set_index("datetime") | |||
| #serial_df.index = pd.to_datetime(serial_df.index) | |||
| #serial_df.sort_index() | |||
| #transmission_df = pd.merge_asof( | |||
| # transmission_df, | |||
| # serial_df, | |||
| # tolerance=pd.Timedelta("1s"), | |||
| # right_index=True, | |||
| # left_index=True, | |||
| #) | |||
| transmission_df_list.append(dict( | |||
| df=transmission_df, | |||