| @@ -10,6 +10,7 @@ import pandas as pd | |||
| import matplotlib.pyplot as plt | |||
| import seaborn as sns | |||
| sns.set() | |||
| tex_fonts = { | |||
| @@ -25,6 +26,7 @@ tex_fonts = { | |||
| "mathtext.fontset": "dejavusans", | |||
| } | |||
| # plt.rcParams.update(tex_fonts) | |||
| @@ -89,7 +91,7 @@ if __name__ == "__main__": | |||
| transmission_df = transmission_df.sort_index() | |||
| # srtt to [s] | |||
| transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6) | |||
| transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10 ** 6) | |||
| # key for columns and level for index | |||
| transmission_df["goodput"] = ( | |||
| @@ -98,14 +100,14 @@ if __name__ == "__main__": | |||
| .transform("sum") | |||
| ) | |||
| transmission_df["goodput"] = transmission_df["goodput"].apply( | |||
| lambda x: ((x * 8) / args.interval) / 10**6 | |||
| lambda x: ((x * 8) / args.interval) / 10 ** 6 | |||
| ) | |||
| transmission_df["goodput_rolling"] = ( | |||
| transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum() | |||
| ) | |||
| transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply( | |||
| lambda x: ((x * 8) / args.interval) / 10**6 | |||
| lambda x: ((x * 8) / args.interval) / 10 ** 6 | |||
| ) | |||
| # set meta values and remove all not needed columns | |||
| @@ -171,14 +173,15 @@ if __name__ == "__main__": | |||
| ].fillna(0) | |||
| transmission_df["lte_effective_bw_sum"] = ( | |||
| transmission_df["LTE_SCC1_effective_bw"].fillna(0) | |||
| + transmission_df["LTE_SCC2_effective_bw"].fillna(0) | |||
| + transmission_df["LTE_SCC3_effective_bw"].fillna(0) | |||
| + transmission_df["LTE_SCC4_effective_bw"].fillna(0) | |||
| + transmission_df["LTE_bw"].fillna(0)) | |||
| transmission_df["LTE_SCC1_effective_bw"].fillna(0) | |||
| + transmission_df["LTE_SCC2_effective_bw"].fillna(0) | |||
| + transmission_df["LTE_SCC3_effective_bw"].fillna(0) | |||
| + transmission_df["LTE_SCC4_effective_bw"].fillna(0) | |||
| + transmission_df["LTE_bw"].fillna(0)) | |||
| transmission_df["nr_effective_bw_sum"] = transmission_df["SCC1_NR5G_effective_bw"] | |||
| transmission_df["effective_bw_sum"] = transmission_df["nr_effective_bw_sum"] + transmission_df["lte_effective_bw_sum"] | |||
| transmission_df["effective_bw_sum"] = transmission_df["nr_effective_bw_sum"] + transmission_df[ | |||
| "lte_effective_bw_sum"] | |||
| # transmission timeline | |||
| scaley = 1.5 | |||
| @@ -309,21 +312,24 @@ if __name__ == "__main__": | |||
| ax01.set_ylabel("Bandwidth [MHz]") | |||
| if args.fancy: | |||
| ax0.set_xlim([0, transmission_df.index[-1]]) | |||
| ax00.set_xlim([0, transmission_df.index[-1]]) | |||
| # added these three lines | |||
| lns_ax0 = snd_plot + srtt_plot + goodput_plot | |||
| labs_ax0 = [l.get_label() for l in lns_ax0] | |||
| ax0.legend(lns_ax0, labs_ax0, ncols=4, fontsize=12, loc="upper center") | |||
| lns_ax00 = eff_bw_plot + lte_eff_bw_plot + nr_eff_bw_plot + lte_rsrq_plot + nr_rsrq_plot | |||
| if lte_hanover_plot: | |||
| lns_ax00.append(lte_hanover_plot) | |||
| if nr_hanover_plot: | |||
| lns_ax00.append(nr_hanover_plot) | |||
| labs_ax00 = [l.get_label() for l in lns_ax0] | |||
| labs_ax00 = [l.get_label() for l in labs_ax00] | |||
| ax00.legend(lns_ax00, labs_ax00, ncols=4, fontsize=12, loc="upper center") | |||
| plt.savefig("{}{}_plot.eps".format(args.save, csv.replace(".csv", "")), bbox_inches="tight") | |||
| else: | |||
| fig.legend(loc="lower right") | |||
| plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", "")), bbox_inches="tight") | |||
| plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", "")), bbox_inches="tight") | |||
| # except Exception as e: | |||
| # print("Error processing file: {}".format(csv)) | |||
| # print(str(e)) | |||