| @@ -150,17 +150,21 @@ if __name__ == "__main__": | |||
| # key for columns and level for index | |||
| transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum") | |||
| #transmission_df["goodput"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum() | |||
| transmission_df["goodput"] = transmission_df["goodput"].apply( | |||
| lambda x: ((x * 8) / args.interval) / 10**6 | |||
| ) | |||
| transmission_df["goodput_rolling"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum() | |||
| transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply( | |||
| lambda x: ((x * 8) / args.interval) / 10 ** 6 | |||
| ) | |||
| # set meta values and remove all not needed columns | |||
| cc_algo = transmission_df["congestion_control"].iloc[0] | |||
| cc_algo = cc_algo.upper() | |||
| transmission_direction = transmission_df["direction"].iloc[0] | |||
| transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt"]) | |||
| transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling"]) | |||
| # read serial csv | |||
| serial_df = pd.read_csv(args.serial_file) | |||
| @@ -193,7 +197,7 @@ if __name__ == "__main__": | |||
| plt.subplots_adjust() | |||
| host.plot(transmission_df["goodput"], "-", color="blue", label="goodput") | |||
| host.plot(transmission_df["goodput_rolling"], "-", color="blue", label="goodput") | |||
| host.set_xlabel("datetime") | |||
| host.set_ylabel("goodput [Mbps]") | |||