| #!/usr/bin/env python3 | |||||
| import multiprocessing | |||||
| import os | |||||
| from argparse import ArgumentParser | |||||
| from math import ceil | |||||
| from time import sleep | |||||
| import pandas as pd | |||||
| import geopandas as gpd | |||||
| import contextily as cx | |||||
| import matplotlib.pyplot as plt | |||||
| from mpl_toolkits import axisartist | |||||
| from mpl_toolkits.axes_grid1 import host_subplot | |||||
| from util import chunk_list | |||||
| def csv_to_dataframe(csv_list, dummy): | |||||
| global n | |||||
| global frame_list | |||||
| transmission_df = None | |||||
| for csv in csv_list: | |||||
| tmp_df = pd.read_csv( | |||||
| "{}{}".format(args.pcap_csv_folder, csv), | |||||
| dtype=dict(is_retranmission=bool, is_dup_ack=bool), | |||||
| ) | |||||
| tmp_df["datetime"] = pd.to_datetime(tmp_df["datetime"]) - pd.Timedelta(hours=1) | |||||
| tmp_df = tmp_df.set_index("datetime") | |||||
| tmp_df.index = pd.to_datetime(tmp_df.index) | |||||
| if transmission_df is None: | |||||
| transmission_df = tmp_df | |||||
| else: | |||||
| transmission_df = pd.concat([transmission_df, tmp_df]) | |||||
| n.value += 1 | |||||
| frame_list.append(transmission_df) | |||||
| from itertools import islice | |||||
| def chunk(it, size): | |||||
| it = iter(it) | |||||
| return iter(lambda: tuple(islice(it, size)), ()) | |||||
| if __name__ == "__main__": | |||||
| parser = ArgumentParser() | |||||
| parser.add_argument("-f", "--gps_file", required=True, help="GPS csv file.") | |||||
| parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.") | |||||
| parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.") | |||||
| parser.add_argument("--save", default=None, help="Location to save pdf file.") | |||||
| parser.add_argument( | |||||
| "--show_providerinfo", | |||||
| default=False, | |||||
| help="Show providerinfo for map tiles an zoom levels.", | |||||
| ) | |||||
| parser.add_argument( | |||||
| "-c", | |||||
| "--cores", | |||||
| default=1, | |||||
| type=int, | |||||
| help="Number of cores for multiprocessing.", | |||||
| ) | |||||
| parser.add_argument( | |||||
| "-i", | |||||
| "--interval", | |||||
| default=10, | |||||
| type=int, | |||||
| help="Time interval for rolling window.", | |||||
| ) | |||||
| args = parser.parse_args() | |||||
| manager = multiprocessing.Manager() | |||||
| n = manager.Value("i", 0) | |||||
| frame_list = manager.list() | |||||
| jobs = [] | |||||
| # load all pcap csv into one dataframe | |||||
| pcap_csv_list = list() | |||||
| for filename in os.listdir(args.pcap_csv_folder): | |||||
| if filename.endswith(".csv") and "tcp" in filename: | |||||
| pcap_csv_list.append(filename) | |||||
| parts = chunk(pcap_csv_list, ceil(len(pcap_csv_list) / args.cores)) | |||||
| print("Start processing with {} jobs.".format(args.cores)) | |||||
| for p in parts: | |||||
| process = multiprocessing.Process(target=csv_to_dataframe, args=(p, "dummy")) | |||||
| jobs.append(process) | |||||
| for j in jobs: | |||||
| j.start() | |||||
| print("Started all jobs.") | |||||
| # Ensure all of the processes have finished | |||||
| finished_job_counter = 0 | |||||
| working = ["|", "/", "-", "\\", "|", "/", "-", "\\"] | |||||
| w = 0 | |||||
| while len(jobs) != finished_job_counter: | |||||
| sleep(1) | |||||
| print( | |||||
| "\r\t{}{}{}\t Running {} jobs ({} finished). Processed {} out of {} pcap csv files. ({}%) ".format( | |||||
| working[w], | |||||
| working[w], | |||||
| working[w], | |||||
| len(jobs), | |||||
| finished_job_counter, | |||||
| n.value, | |||||
| len(pcap_csv_list), | |||||
| round((n.value / len(pcap_csv_list)) * 100, 2), | |||||
| ), | |||||
| end="", | |||||
| ) | |||||
| finished_job_counter = 0 | |||||
| for j in jobs: | |||||
| if not j.is_alive(): | |||||
| finished_job_counter += 1 | |||||
| if (w + 1) % len(working) == 0: | |||||
| w = 0 | |||||
| else: | |||||
| w += 1 | |||||
| print("\r\nSorting table...") | |||||
| transmission_df = pd.concat(frame_list) | |||||
| frame_list = None | |||||
| transmission_df = transmission_df.sort_index() | |||||
| print("Calculate goodput...") | |||||
| transmission_df["goodput"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum() | |||||
| transmission_df["goodput"] = transmission_df["goodput"].apply( | |||||
| lambda x: ((x * 8) / args.interval) / 10**6 | |||||
| ) | |||||
| # load dataframe an put it into geopandas | |||||
| df = pd.read_csv(args.gps_file) | |||||
| df["kmh"] = df["speed (knots)"].apply(lambda x: x * 1.852) | |||||
| df = df.set_index("datetime") | |||||
| df.index = pd.to_datetime(df.index) | |||||
| gdf = gpd.GeoDataFrame( | |||||
| df, | |||||
| geometry=gpd.points_from_xy(df["longitude"], df["latitude"]), | |||||
| crs="EPSG:4326", | |||||
| ) | |||||
| gdf = pd.merge_asof( | |||||
| gdf, | |||||
| transmission_df, | |||||
| tolerance=pd.Timedelta("10s"), | |||||
| right_index=True, | |||||
| left_index=True, | |||||
| ) | |||||
| # read serial csv | |||||
| serial_df = pd.read_csv(args.serial_file) | |||||
| serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1) | |||||
| serial_df = serial_df.set_index("datetime") | |||||
| serial_df.index = pd.to_datetime(serial_df.index) | |||||
| gdf = pd.merge_asof( | |||||
| gdf, | |||||
| serial_df, | |||||
| tolerance=pd.Timedelta("1s"), | |||||
| right_index=True, | |||||
| left_index=True, | |||||
| ) | |||||
| # format to needed format and add basemap as background | |||||
| df_wm = gdf.to_crs(epsg=3857) | |||||
| scaley = 1.5 | |||||
| scalex = 1.0 | |||||
| plt.figure(figsize=[6.4 * scaley, 4.8 * scalex]) | |||||
| host = host_subplot(111, axes_class=axisartist.Axes) | |||||
| plt.subplots_adjust() | |||||
| # additional y axes | |||||
| par11 = host.twinx() | |||||
| par12 = host.twinx() | |||||
| # par13 = host.twinx() | |||||
| # axes offset | |||||
| par12.axis["right"] = par12.new_fixed_axis(loc="right", offset=(60, 0)) | |||||
| # par13.axis["right"] = par13.new_fixed_axis(loc="right", offset=(120, 0)) | |||||
| par11.axis["right"].toggle(all=True) | |||||
| par12.axis["right"].toggle(all=True) | |||||
| # par13.axis["right"].toggle(all=True) | |||||
| host.plot(gdf["goodput"], "-", color="blue", label="goodput" ) | |||||
| host.set_xlabel("datetime") | |||||
| host.set_ylabel("goodput [Mbps]") | |||||
| #host.set_ylim([0, 13]) | |||||
| #host.set_yscale("log") | |||||
| #host.set_yscale("log") | |||||
| #host.set_yscale("log") | |||||
| #host.set_yscale("log") | |||||
| par11.plot(gdf["downlink_cqi"], "--", color="green", label="CQI") | |||||
| par11.set_ylabel("CQI") | |||||
| par11.set_ylim([0, 15]) | |||||
| par12.plot() | |||||
| if args.save: | |||||
| plt.savefig("{}timeline_plot.pdf".format(args.save)) | |||||
| else: | |||||
| plt.show() |