| mask = transmission_df["LTE_SCC{}_state".format(i)].isin(["ACTIVE"]) | mask = transmission_df["LTE_SCC{}_state".format(i)].isin(["ACTIVE"]) | ||||
| transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[ | transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[ | ||||
| "LTE_SCC{}_effective_bw".format(i) | "LTE_SCC{}_effective_bw".format(i) | ||||
| ].where(mask, other=np.NaN) | |||||
| transmission_df["LTE_SCC{}_effective_bw".format(i)].dropna() | |||||
| ].where(mask, other=0) | |||||
| # filter if sc is usesd for uplink | # filter if sc is usesd for uplink | ||||
| for i in range(1, 5): | for i in range(1, 5): | ||||
| mask = transmission_df["LTE_SCC{}_UL_Configured".format(i)].isin([False]) | mask = transmission_df["LTE_SCC{}_UL_Configured".format(i)].isin([False]) | ||||
| transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[ | transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[ | ||||
| "LTE_SCC{}_effective_bw".format(i) | "LTE_SCC{}_effective_bw".format(i) | ||||
| ].where(mask, other=np.nan) | |||||
| transmission_df["LTE_SCC{}_effective_bw".format(i)].dropna() | |||||
| ].where(mask, other=0) | |||||
| # sum all effective bandwidth for 5G and 4G | # sum all effective bandwidth for 5G and 4G | ||||
| transmission_df["SCC1_NR5G_effective_bw"] = transmission_df[ | transmission_df["SCC1_NR5G_effective_bw"] = transmission_df[ | ||||
| "LTE_SCC4_effective_bw", | "LTE_SCC4_effective_bw", | ||||
| ] | ] | ||||
| transmission_df.to_csv("{}{}_plot.csv".format(args.save, csv.replace(".csv", ""))) | |||||
| exit() | |||||
| ax_stacked = transmission_df[bw_cols].plot.area(stacked=True, linewidth=0, ax=ax00) | ax_stacked = transmission_df[bw_cols].plot.area(stacked=True, linewidth=0, ax=ax00) | ||||
| ax00.set_ylabel("bandwidth [MHz]") | ax00.set_ylabel("bandwidth [MHz]") | ||||
| #ax.set_xlabel("time [minutes]") | #ax.set_xlabel("time [minutes]") |