#!/usr/bin/env python3 import math import multiprocessing import os from argparse import ArgumentParser import matplotlib import pandas as pd import matplotlib.pyplot as plt # Using seaborn's style #plt.style.use('seaborn') tex_fonts = { "pgf.texsystem": "lualatex", # "legend.fontsize": "x-large", # "figure.figsize": (15, 5), "axes.labelsize": 15, # "small", # "axes.titlesize": "x-large", "xtick.labelsize": 15, # "small", "ytick.labelsize": 15, # "small", "legend.fontsize": 15, "axes.formatter.use_mathtext": True, "mathtext.fontset": "dejavusans", } #plt.rcParams.update(tex_fonts) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.") parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.") parser.add_argument("--save", required=True, help="Location to save pdf file.") parser.add_argument( "-i", "--interval", default=10, type=int, help="Time interval for rolling window.", ) args = parser.parse_args() pcap_csv_list = list() for filename in os.listdir(args.pcap_csv_folder): if filename.endswith(".csv") and "tcp" in filename: pcap_csv_list.append(filename) counter = 1 if len(pcap_csv_list) == 0: print("No CSV files found.") pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", ""))) for csv in pcap_csv_list: print("\rProcessing {} out of {} CSVs.\t({}%)\t".format(counter, len(pcap_csv_list), math.floor(counter/len(pcap_csv_list)))) #try: transmission_df = pd.read_csv( "{}{}".format(args.pcap_csv_folder, csv), dtype=dict(is_retranmission=bool, is_dup_ack=bool), ) transmission_df["datetime"] = pd.to_datetime(transmission_df["datetime"]) - pd.Timedelta(hours=1) transmission_df = transmission_df.set_index("datetime") transmission_df.index = pd.to_datetime(transmission_df.index) transmission_df = transmission_df.sort_index() # srtt to [s] transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6) # key for columns and level for index transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum") transmission_df["goodput"] = transmission_df["goodput"].apply( lambda x: ((x * 8) / args.interval) / 10**6 ) transmission_df["goodput_rolling"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum() transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply( lambda x: ((x * 8) / args.interval) / 10 ** 6 ) # set meta values and remove all not needed columns cc_algo = transmission_df["congestion_control"].iloc[0] cc_algo = cc_algo.upper() transmission_direction = transmission_df["direction"].iloc[0] #transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"]) # read serial csv serial_df = pd.read_csv(args.serial_file) serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1) serial_df = serial_df.set_index("datetime") serial_df.index = pd.to_datetime(serial_df.index) serial_df.sort_index() transmission_df = pd.merge_asof( transmission_df, serial_df, tolerance=pd.Timedelta("1s"), right_index=True, left_index=True, ) transmission_df = transmission_df.rename(columns={"PCID": "lte_pcid", "PCID.1": "nr_pcid"}) transmission_df.index = transmission_df["arrival_time"] # transmission timeline scaley = 1.5 scalex = 1.0 plt.title("{} with {}".format(transmission_direction, cc_algo)) fig, ax = plt.subplots(2, 1, figsize=[6.4 * scaley, 4.8 * scalex]) fig.subplots_adjust(right=0.75) fig.suptitle("{} with {}".format(transmission_direction, cc_algo)) ax0 = ax[0] ax1 = ax0.twinx() ax2 = ax0.twinx() #ax2.spines.right.set_position(("axes", 1.22)) ax00 = ax[1] ax01 = ax00.twinx() # Plot vertical lines lte_handovers = transmission_df["lte_pcid"].diff().dropna() for index, value in lte_handovers.items(): if value > 0: ax00.axvline(index, ymin=0, ymax=1, color="skyblue", label="4G Handover") nr_handovers = transmission_df["nr_pcid"].diff().dropna() for index, value in nr_handovers.items(): if value > 0: ax00.axvline(index, ymin=0, ymax=1, color="greenyellow", label="5G Handover") ax0.plot(transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd") ax1.plot(transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT") ax2.plot(transmission_df["goodput_rolling"], color="blue", linestyle="solid", label="goodput") ax00.plot(transmission_df["downlink_cqi"].dropna(), color="magenta", linestyle="dotted", label="CQI") ax01.plot(transmission_df["DL_bandwidth"].dropna(), color="peru", linestyle="dotted", label="bandwidth") ax2.spines.right.set_position(("axes", 1.1)) ax0.set_ylim(0, 5000) ax1.set_ylim(0, 0.3) ax2.set_ylim(0, 500) ax00.set_ylim(0, 16) ax01.set_ylim(0, 21) ax00.set_xlabel("arrival time [s]") ax2.set_ylabel("Goodput [mbps]") ax00.set_ylabel("CQI") ax1.set_ylabel("sRTT [s]") ax0.set_ylabel("cwnd") ax01.set_ylabel("Bandwidth [MHz]") fig.legend(loc="lower right") plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", ""))) #except Exception as e: # print("Error processing file: {}".format(csv)) # print(str(e)) counter += 1 plt.close(fig) plt.clf()