#!/usr/bin/env python3 import multiprocessing import os from argparse import ArgumentParser from math import ceil from time import sleep import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits import axisartist from mpl_toolkits.axes_grid1 import host_subplot def csv_to_dataframe(csv_list, dummy): global n global frame_list transmission_df = None for csv in csv_list: tmp_df = pd.read_csv( "{}{}".format(args.pcap_csv_folder, csv), dtype=dict(is_retranmission=bool, is_dup_ack=bool), ) tmp_df["datetime"] = pd.to_datetime(tmp_df["datetime"]) - pd.Timedelta(hours=1) tmp_df = tmp_df.set_index("datetime") tmp_df.index = pd.to_datetime(tmp_df.index) if transmission_df is None: transmission_df = tmp_df else: transmission_df = pd.concat([transmission_df, tmp_df]) n.value += 1 frame_list.append(transmission_df) from itertools import islice def chunk(it, size): it = iter(it) return iter(lambda: tuple(islice(it, size)), ()) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("-f", "--gps_file", required=True, help="GPS csv file.") parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.") parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.") parser.add_argument("--save", default=None, help="Location to save pdf file.") parser.add_argument( "--show_providerinfo", default=False, help="Show providerinfo for map tiles an zoom levels.", ) parser.add_argument( "-c", "--cores", default=1, type=int, help="Number of cores for multiprocessing.", ) parser.add_argument( "-i", "--interval", default=10, type=int, help="Time interval for rolling window.", ) args = parser.parse_args() manager = multiprocessing.Manager() n = manager.Value("i", 0) frame_list = manager.list() jobs = [] # load all pcap csv into one dataframe pcap_csv_list = list() for filename in os.listdir(args.pcap_csv_folder): if filename.endswith(".csv") and "tcp" in filename: pcap_csv_list.append(filename) parts = chunk(pcap_csv_list, ceil(len(pcap_csv_list) / args.cores)) print("Start processing with {} jobs.".format(args.cores)) for p in parts: process = multiprocessing.Process(target=csv_to_dataframe, args=(p, "dummy")) jobs.append(process) for j in jobs: j.start() print("Started all jobs.") # Ensure all of the processes have finished finished_job_counter = 0 working = ["|", "/", "-", "\\", "|", "/", "-", "\\"] w = 0 while len(jobs) != finished_job_counter: sleep(1) print( "\r\t{}{}{}\t Running {} jobs ({} finished). Processed {} out of {} pcap csv files. ({}%) ".format( working[w], working[w], working[w], len(jobs), finished_job_counter, n.value, len(pcap_csv_list), round((n.value / len(pcap_csv_list)) * 100, 2), ), end="", ) finished_job_counter = 0 for j in jobs: if not j.is_alive(): finished_job_counter += 1 if (w + 1) % len(working) == 0: w = 0 else: w += 1 print("\r\nSorting table...") transmission_df = pd.concat(frame_list) frame_list = None transmission_df = transmission_df.sort_index() print("Calculate goodput...") transmission_df["goodput"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum() transmission_df["goodput"] = transmission_df["goodput"].apply( lambda x: ((x * 8) / args.interval) / 10**6 ) # remove all not needed columns transmission_df = transmission_df.filter(["goodput", "datetime"]) # read serial csv serial_df = pd.read_csv(args.serial_file) serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1) serial_df = serial_df.set_index("datetime") serial_df.index = pd.to_datetime(serial_df.index) transmission_df = pd.merge_asof( transmission_df, serial_df, tolerance=pd.Timedelta("1s"), right_index=True, left_index=True, ) scaley = 1.5 scalex = 1.0 plt.figure(figsize=[6.4 * scaley, 4.8 * scalex]) host = host_subplot(111, axes_class=axisartist.Axes) plt.subplots_adjust() # additional y axes par11 = host.twinx() par12 = host.twinx() # par13 = host.twinx() # axes offset par12.axis["right"] = par12.new_fixed_axis(loc="right", offset=(60, 0)) # par13.axis["right"] = par13.new_fixed_axis(loc="right", offset=(120, 0)) par11.axis["right"].toggle(all=True) par12.axis["right"].toggle(all=True) # par13.axis["right"].toggle(all=True) host.plot(transmission_df["goodput"], "-", color="blue", label="goodput" ) host.set_xlabel("datetime") host.set_ylabel("goodput [Mbps]") #host.set_ylim([0, 13]) #host.set_yscale("log") #host.set_yscale("log") #host.set_yscale("log") #host.set_yscale("log") par11.plot(transmission_df["downlink_cqi"], "--", color="green", label="CQI") par11.set_ylabel("CQI") par11.set_ylim([0, 15]) par12.plot() if args.save: plt.savefig("{}timeline_plot.pdf".format(args.save)) else: plt.show() plt.clf() print("Calculate and polt CDF...") # Get the frequency, PDF and CDF for each value in the series # Frequency transmission_df["gp_frequency"] = transmission_df["goodput"] transmission_df.groupby("gp_frequency")["gp_frequency"].agg("count").pipe(pd.DataFrame) # PDF transmission_df["pdf"] = transmission_df["gp_frequency"] / sum(transmission_df["gp_frequency"]) # CDF transmission_df["cdf"] = transmission_df["pdf"].cumsum() transmission_df.reset_index(inplace=True) transmission_df.plot(x="goodput", y=["cdf"], grid=True) if args.save: plt.savefig("{}cdf_plot.pdf".format(args.save)) else: plt.show()