#!/usr/bin/env python3 import multiprocessing import os from argparse import ArgumentParser from math import ceil from time import sleep import pandas as pd import geopandas as gpd import contextily as cx import matplotlib.pyplot as plt if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("-f", "--file", required=True, help="Messfahrt csv") parser.add_argument("-a", "--column", required=True, help="Column to plot") parser.add_argument("-l", "--label", help="Label above the plot.") parser.add_argument("--no_legend", action="store_false", default=True, help="Do not show legend.") parser.add_argument("--save", default=None, help="Location to save pdf file.") parser.add_argument("--time_offset", default=None, type=int, help="Minutes added to GPS datetime.") parser.add_argument( "--show_providerinfo", default=False, help="Show providerinfo for map tiles an zoom levels.", ) args = parser.parse_args() df = pd.read_csv(args.file) gdf = gpd.GeoDataFrame( df, geometry=gpd.points_from_xy(df["longitude"], df["latitude"]), crs="EPSG:4326", ) gdf["srtt"] = gdf["srtt"].apply(lambda x: x / 10 ** 6) print("Start plotting...") df_wm = gdf.to_crs(epsg=3857) ax2 = df_wm.plot() ax2 = df_wm.plot(args.column, cmap="hot", legend=args.no_legend, ax=ax2) # ax2 = df_wm.plot.scatter(x="longitude", y="latitude", c="kmh", cmap="hot") # zoom 17 is pretty cx.add_basemap(ax2, source=cx.providers.OpenStreetMap.Mapnik, zoom=17) # gdf.plot() ax2.set_axis_off() ax2.set_title(args.label if args.label else args.column) if args.show_providerinfo: ##################################### # Identifying how many tiles latlon_outline = gdf.to_crs("epsg:4326").total_bounds def_zoom = cx.tile._calculate_zoom(*latlon_outline) print(f"Default Zoom level {def_zoom}") cx.howmany(*latlon_outline, def_zoom, ll=True) cx.howmany(*latlon_outline, def_zoom + 1, ll=True) cx.howmany(*latlon_outline, def_zoom + 2, ll=True) # Checking out some of the other providers and tiles print(cx.providers.CartoDB.Voyager) print(cx.providers.Stamen.TonerLite) print(cx.providers.Stamen.keys()) ##################################### # df.plot(x="longitude", y="latitude", kind="scatter", colormap="YlOrRd") if args.save: plt.savefig("{}gps_plot.pdf".format(args.save)) else: plt.show()