#!/usr/bin/env python3 import math import multiprocessing import os from argparse import ArgumentParser import matplotlib import numpy as np import pandas as pd import matplotlib.pyplot as plt # Using seaborn's style # plt.style.use('seaborn') tex_fonts = { "pgf.texsystem": "lualatex", # "legend.fontsize": "x-large", # "figure.figsize": (15, 5), "axes.labelsize": 15, # "small", # "axes.titlesize": "x-large", "xtick.labelsize": 15, # "small", "ytick.labelsize": 15, # "small", "legend.fontsize": 15, "axes.formatter.use_mathtext": True, "mathtext.fontset": "dejavusans", } # plt.rcParams.update(tex_fonts) def convert_cellid(value): if isinstance(value, str): try: r = int(value.split(" ")[-1].replace("(", "").replace(")", "")) return r except Exception as e: return -1 else: return int(-1) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.") parser.add_argument( "-p", "--pcap_csv_folder", required=True, help="PCAP csv folder." ) parser.add_argument("--save", required=True, help="Location to save pdf file.") parser.add_argument( "-i", "--interval", default=10, type=int, help="Time interval for rolling window.", ) args = parser.parse_args() pcap_csv_list = list() for filename in os.listdir(args.pcap_csv_folder): if filename.endswith(".csv") and "tcp" in filename: pcap_csv_list.append(filename) counter = 1 if len(pcap_csv_list) == 0: print("No CSV files found.") pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", ""))) for csv in pcap_csv_list: print( "\rProcessing {} out of {} CSVs.\t({}%)\t".format( counter, len(pcap_csv_list), math.floor(counter / len(pcap_csv_list)) ) ) # try: transmission_df = pd.read_csv( "{}{}".format(args.pcap_csv_folder, csv), dtype=dict(is_retranmission=bool, is_dup_ack=bool), ) transmission_df["datetime"] = pd.to_datetime( transmission_df["datetime"] ) - pd.Timedelta(hours=1) transmission_df = transmission_df.set_index("datetime") transmission_df.index = pd.to_datetime(transmission_df.index) transmission_df = transmission_df.sort_index() # srtt to [s] transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6) # key for columns and level for index transmission_df["goodput"] = ( transmission_df["payload_size"] .groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))) .transform("sum") ) transmission_df["goodput"] = transmission_df["goodput"].apply( lambda x: ((x * 8) / args.interval) / 10**6 ) transmission_df["goodput_rolling"] = ( transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum() ) transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply( lambda x: ((x * 8) / args.interval) / 10**6 ) # set meta values and remove all not needed columns cc_algo = transmission_df["congestion_control"].iloc[0] cc_algo = cc_algo.upper() transmission_direction = transmission_df["direction"].iloc[0] # transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"]) # read serial csv serial_df = pd.read_csv( args.serial_file, converters={"Cell_ID": convert_cellid} ) serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta( hours=1 ) serial_df = serial_df.set_index("datetime") serial_df.index = pd.to_datetime(serial_df.index) serial_df.sort_index() # print(serial_df["Cell_ID"]) # serial_df["Cell_ID"] = serial_df["Cell_ID"].apply( # lambda x: int(x.split(" ")[-1].replace("(", "").replace(")", ""))) transmission_df = pd.merge_asof( transmission_df, serial_df, tolerance=pd.Timedelta("1s"), right_index=True, left_index=True, ) transmission_df.index = transmission_df["arrival_time"] # replace 0 in RSRQ with Nan transmission_df["NR5G_RSRQ_(dB)"] = transmission_df["NR5G_RSRQ_(dB)"].replace( 0, np.NaN ) transmission_df["RSRQ_(dB)"] = transmission_df["RSRQ_(dB)"].replace(0, np.NaN) # filter active state for i in range(1, 5): transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[ "LTE_SCC{}_bw".format(i) ] mask = transmission_df["LTE_SCC{}_state".format(i)].isin(["ACTIVE"]) transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[ "LTE_SCC{}_effective_bw".format(i) ].where(mask, other=0) # filter if sc is usesd for uplink for i in range(1, 5): mask = transmission_df["LTE_SCC{}_UL_Configured".format(i)].isin([False]) transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[ "LTE_SCC{}_effective_bw".format(i) ].where(mask, other=0) # sum all effective bandwidth for 5G and 4G transmission_df["SCC1_NR5G_effective_bw"] = transmission_df[ "SCC1_NR5G_bw" ].fillna(0) transmission_df["effective_bw_sum"] = ( transmission_df["SCC1_NR5G_effective_bw"] + transmission_df["LTE_SCC1_effective_bw"] + transmission_df["LTE_SCC2_effective_bw"] + transmission_df["LTE_SCC3_effective_bw"] + transmission_df["LTE_SCC4_effective_bw"] + transmission_df["LTE_bw"] ) transmission_df["lte_effective_bw_sum"] = ( transmission_df["LTE_SCC1_effective_bw"] + transmission_df["LTE_SCC2_effective_bw"] + transmission_df["LTE_SCC3_effective_bw"] + transmission_df["LTE_SCC4_effective_bw"] + transmission_df["LTE_bw"]) transmission_df["nr_effective_bw_sum"] = transmission_df["SCC1_NR5G_effective_bw"] # transmission timeline scaley = 1.5 scalex = 1.0 plt.title("{} with {}".format(transmission_direction, cc_algo)) fig, ax = plt.subplots(2, 1, figsize=[6.4 * scaley, 4.8 * scalex]) fig.subplots_adjust(right=0.75) fig.suptitle("{} with {}".format(transmission_direction, cc_algo)) ax0 = ax[0] ax1 = ax0.twinx() ax2 = ax0.twinx() # ax2.spines.right.set_position(("axes", 1.22)) ax00 = ax[1] ax01 = ax00.twinx() ax02 = ax00.twinx() # Plot vertical lines first = True lte_handovers = transmission_df["Cell_ID"].dropna().diff() for index, value in lte_handovers.items(): if value > 0: if first: ax00.axvline( index, ymin=0, ymax=1, color="skyblue", label="4G Handover" ) first = False else: ax00.axvline(index, ymin=0, ymax=1, color="skyblue") first = True nr_handovers = ( transmission_df["NR5G_Cell_ID"].replace(0, np.NaN).dropna().diff() ) for index, value in nr_handovers.items(): if value > 0: if first: ax00.axvline( index, ymin=0, ymax=1, color="greenyellow", label="5G Handover" ) first = False else: ax00.axvline(index, ymin=0, ymax=1, color="greenyellow") ax0.plot( transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd", ) ax1.plot( transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT", ) ax2.plot( transmission_df["goodput_rolling"], color="blue", linestyle="solid", label="goodput", ) # ax2.plot(transmission_df["goodput"], color="blue", linestyle="solid", label="goodput") ax01.plot( transmission_df["effective_bw_sum"].dropna(), color="peru", linestyle="solid", label="bandwidth", ) ax01.plot( transmission_df["lte_effective_bw_sum"].dropna(), color="lightsteelblue", linestyle="solid", label="4G bandwidth", alpha=0.5, ) ax01.plot( transmission_df["nr_effective_bw_sum"].dropna(), color="cornflowerblue", linestyle="solid", label="5G bandwidth", alpha=0.5, ) # ax01.stackplot(transmission_df["arrival_time"].to_list(), # [transmission_df["lte_bw_sum"].to_list(), transmission_df["nr_bw_sum"].to_list()], # colors=["lightsteelblue", "cornflowerblue"], # labels=["4G bandwidth", "5G bandwidth"] # ) ax02.plot( transmission_df["RSRQ_(dB)"].dropna(), color="purple", linestyle="dotted", label="LTE RSRQ", ) ax00.plot( transmission_df["NR5G_RSRQ_(dB)"].dropna(), color="magenta", linestyle="dotted", label="NR RSRQ", ) ax2.spines.right.set_position(("axes", 1.1)) ax02.spines.right.set_position(("axes", 1.1)) ax0.set_ylim(0, 5000) ax1.set_ylim(0, 0.3) ax2.set_ylim(0, 500) ax00.set_ylim(-25, 0) ax01.set_ylim(0, 250) # second dB axis ax02.set_ylim(-25, 0) ax02.set_axis_off() ax00.set_xlabel("arrival time [s]") ax2.set_ylabel("Goodput [mbps]") ax00.set_ylabel("LTE/NR RSRQ [dB]") # ax02.set_ylabel("LTE RSRQ [dB]") ax1.set_ylabel("sRTT [s]") ax0.set_ylabel("cwnd") ax01.set_ylabel("Bandwidth [MHz]") fig.legend(loc="lower right") plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", ""))) # except Exception as e: # print("Error processing file: {}".format(csv)) # print(str(e)) counter += 1 plt.close(fig) plt.clf()