You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

199 lines
6.6KB

  1. #!/usr/bin/env python3
  2. import math
  3. import multiprocessing
  4. import os
  5. from argparse import ArgumentParser
  6. import matplotlib
  7. import numpy as np
  8. import pandas as pd
  9. import matplotlib.pyplot as plt
  10. import seaborn as sns
  11. sns.set()
  12. #sns.set(font_scale=1.5)
  13. tex_fonts = {
  14. "pgf.texsystem": "lualatex",
  15. # "legend.fontsize": "x-large",
  16. # "figure.figsize": (15, 5),
  17. "axes.labelsize": 15, # "small",
  18. # "axes.titlesize": "x-large",
  19. "xtick.labelsize": 15, # "small",
  20. "ytick.labelsize": 15, # "small",
  21. "legend.fontsize": 15,
  22. "axes.formatter.use_mathtext": True,
  23. "mathtext.fontset": "dejavusans",
  24. }
  25. # plt.rcParams.update(tex_fonts)
  26. def convert_cellid(value):
  27. if isinstance(value, str):
  28. try:
  29. r = int(value.split(" ")[-1].replace("(", "").replace(")", ""))
  30. return r
  31. except Exception as e:
  32. return -1
  33. else:
  34. return int(-1)
  35. if __name__ == "__main__":
  36. parser = ArgumentParser()
  37. parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
  38. parser.add_argument(
  39. "-p", "--pcap_csv_folder", required=True, help="PCAP csv folder."
  40. )
  41. parser.add_argument("--save", required=True, help="Location to save pdf file.")
  42. parser.add_argument(
  43. "-i",
  44. "--interval",
  45. default=10,
  46. type=int,
  47. help="Time interval for rolling window.",
  48. )
  49. args = parser.parse_args()
  50. pcap_csv_list = list()
  51. for filename in os.listdir(args.pcap_csv_folder):
  52. if filename.endswith(".csv") and "tcp" in filename:
  53. pcap_csv_list.append(filename)
  54. counter = 1
  55. if len(pcap_csv_list) == 0:
  56. print("No CSV files found.")
  57. pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", "")))
  58. concat_frame = None
  59. for csv in pcap_csv_list:
  60. print(
  61. "\rProcessing {} out of {} CSVs.\t({}%)\t".format(
  62. counter, len(pcap_csv_list), math.floor(counter / len(pcap_csv_list))
  63. )
  64. )
  65. # try:
  66. transmission_df = pd.read_csv(
  67. "{}{}".format(args.pcap_csv_folder, csv),
  68. dtype=dict(is_retranmission=bool, is_dup_ack=bool),
  69. )
  70. transmission_df["datetime"] = pd.to_datetime(
  71. transmission_df["datetime"]
  72. ) - pd.Timedelta(hours=1)
  73. transmission_df = transmission_df.set_index("datetime")
  74. transmission_df.index = pd.to_datetime(transmission_df.index)
  75. transmission_df = transmission_df.sort_index()
  76. # srtt to [s]
  77. transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10 ** 6)
  78. # key for columns and level for index
  79. transmission_df["goodput"] = (
  80. transmission_df["payload_size"]
  81. .groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval)))
  82. .transform("sum")
  83. )
  84. transmission_df["goodput"] = transmission_df["goodput"].apply(
  85. lambda x: ((x * 8) / args.interval) / 10 ** 6
  86. )
  87. transmission_df["goodput_rolling"] = (
  88. transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
  89. )
  90. transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
  91. lambda x: ((x * 8) / args.interval) / 10 ** 6
  92. )
  93. # set meta values and remove all not needed columns
  94. cc_algo = transmission_df["congestion_control"].iloc[0]
  95. cc_algo = cc_algo.upper()
  96. transmission_direction = transmission_df["direction"].iloc[0]
  97. # transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"])
  98. # read serial csv
  99. serial_df = pd.read_csv(
  100. args.serial_file, converters={"Cell_ID": convert_cellid}
  101. )
  102. serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(
  103. hours=1
  104. )
  105. serial_df = serial_df.set_index("datetime")
  106. serial_df.index = pd.to_datetime(serial_df.index)
  107. serial_df.sort_index()
  108. # print(serial_df["Cell_ID"])
  109. # serial_df["Cell_ID"] = serial_df["Cell_ID"].apply(
  110. # lambda x: int(x.split(" ")[-1].replace("(", "").replace(")", "")))
  111. transmission_df = pd.merge_asof(
  112. transmission_df,
  113. serial_df,
  114. tolerance=pd.Timedelta("1s"),
  115. right_index=True,
  116. left_index=True,
  117. )
  118. #transmission_df.index = transmission_df["arrival_time"]
  119. # replace 0 in RSRQ with Nan
  120. transmission_df["NR5G_RSRQ_(dB)"] = transmission_df["NR5G_RSRQ_(dB)"].replace(
  121. 0, np.NaN
  122. )
  123. transmission_df["RSRQ_(dB)"] = transmission_df["RSRQ_(dB)"].replace(0, np.NaN)
  124. # filter active state
  125. for i in range(1, 5):
  126. transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
  127. "LTE_SCC{}_bw".format(i)
  128. ]
  129. mask = transmission_df["LTE_SCC{}_state".format(i)].isin(["ACTIVE"])
  130. transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
  131. "LTE_SCC{}_effective_bw".format(i)
  132. ].where(mask, other=0)
  133. # filter if sc is usesd for uplink
  134. for i in range(1, 5):
  135. mask = transmission_df["LTE_SCC{}_UL_Configured".format(i)].isin([False])
  136. transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
  137. "LTE_SCC{}_effective_bw".format(i)
  138. ].where(mask, other=0)
  139. # sum all effective bandwidth for 5G and 4G
  140. transmission_df["SCC1_NR5G_effective_bw"] = transmission_df[
  141. "SCC1_NR5G_bw"
  142. ].fillna(0)
  143. transmission_df["lte_effective_bw_sum"] = (
  144. transmission_df["LTE_SCC1_effective_bw"].fillna(0)
  145. + transmission_df["LTE_SCC2_effective_bw"].fillna(0)
  146. + transmission_df["LTE_SCC3_effective_bw"].fillna(0)
  147. + transmission_df["LTE_SCC4_effective_bw"].fillna(0)
  148. + transmission_df["LTE_bw"].fillna(0))
  149. transmission_df["nr_effective_bw_sum"] = transmission_df["SCC1_NR5G_effective_bw"]
  150. transmission_df["effective_bw_sum"] = transmission_df["nr_effective_bw_sum"] + transmission_df[
  151. "lte_effective_bw_sum"]
  152. transmission_df = transmission_df.filter(["goodput", "effective_bw_sum", "srtt"])
  153. transmission_df = transmission_df.reset_index(drop=True)
  154. if concat_frame is None:
  155. concat_frame = transmission_df
  156. else:
  157. concat_frame = pd.concat([concat_frame, transmission_df])
  158. concat_frame.to_csv("{}_concat_bw_gp.csv".format(args.save))