You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

198 line
7.4KB

  1. #!/usr/bin/env python3
  2. import math
  3. import multiprocessing
  4. import os
  5. from argparse import ArgumentParser
  6. import matplotlib
  7. import numpy as np
  8. import pandas as pd
  9. import matplotlib.pyplot as plt
  10. # Using seaborn's style
  11. #plt.style.use('seaborn')
  12. tex_fonts = {
  13. "pgf.texsystem": "lualatex",
  14. # "legend.fontsize": "x-large",
  15. # "figure.figsize": (15, 5),
  16. "axes.labelsize": 15, # "small",
  17. # "axes.titlesize": "x-large",
  18. "xtick.labelsize": 15, # "small",
  19. "ytick.labelsize": 15, # "small",
  20. "legend.fontsize": 15,
  21. "axes.formatter.use_mathtext": True,
  22. "mathtext.fontset": "dejavusans",
  23. }
  24. #plt.rcParams.update(tex_fonts)
  25. if __name__ == "__main__":
  26. parser = ArgumentParser()
  27. parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
  28. parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.")
  29. parser.add_argument("--save", required=True, help="Location to save pdf file.")
  30. parser.add_argument(
  31. "-i",
  32. "--interval",
  33. default=10,
  34. type=int,
  35. help="Time interval for rolling window.",
  36. )
  37. args = parser.parse_args()
  38. pcap_csv_list = list()
  39. for filename in os.listdir(args.pcap_csv_folder):
  40. if filename.endswith(".csv") and "tcp" in filename:
  41. pcap_csv_list.append(filename)
  42. counter = 1
  43. if len(pcap_csv_list) == 0:
  44. print("No CSV files found.")
  45. pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", "")))
  46. for csv in pcap_csv_list:
  47. print("\rProcessing {} out of {} CSVs.\t({}%)\t".format(counter, len(pcap_csv_list), math.floor(counter/len(pcap_csv_list))))
  48. #try:
  49. transmission_df = pd.read_csv(
  50. "{}{}".format(args.pcap_csv_folder, csv),
  51. dtype=dict(is_retranmission=bool, is_dup_ack=bool),
  52. )
  53. transmission_df["datetime"] = pd.to_datetime(transmission_df["datetime"]) - pd.Timedelta(hours=1)
  54. transmission_df = transmission_df.set_index("datetime")
  55. transmission_df.index = pd.to_datetime(transmission_df.index)
  56. transmission_df = transmission_df.sort_index()
  57. # srtt to [s]
  58. transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6)
  59. # key for columns and level for index
  60. transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum")
  61. transmission_df["goodput"] = transmission_df["goodput"].apply(
  62. lambda x: ((x * 8) / args.interval) / 10**6
  63. )
  64. transmission_df["goodput_rolling"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
  65. transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
  66. lambda x: ((x * 8) / args.interval) / 10 ** 6
  67. )
  68. # set meta values and remove all not needed columns
  69. cc_algo = transmission_df["congestion_control"].iloc[0]
  70. cc_algo = cc_algo.upper()
  71. transmission_direction = transmission_df["direction"].iloc[0]
  72. #transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"])
  73. # read serial csv
  74. serial_df = pd.read_csv(args.serial_file, dtype=dict(Cell_ID=str),)
  75. serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1)
  76. serial_df = serial_df.set_index("datetime")
  77. serial_df.index = pd.to_datetime(serial_df.index)
  78. serial_df.sort_index()
  79. serial_df["Cell_ID"] = serial_df["Cell_ID"].apply(
  80. lambda x: int(x.split(" ")[-1].replace("(", "").replace(")", "")))
  81. transmission_df = pd.merge_asof(
  82. transmission_df,
  83. serial_df,
  84. tolerance=pd.Timedelta("1s"),
  85. right_index=True,
  86. left_index=True,
  87. )
  88. transmission_df.index = transmission_df["arrival_time"]
  89. # replace 0 in RSRQ with Nan
  90. transmission_df["NR5G_RSRQ_(dB)"] = transmission_df["NR5G_RSRQ_(dB)"].replace(0, np.NaN)
  91. transmission_df["RSRQ_(dB)"] = transmission_df["RSRQ_(dB)"].replace(0, np.NaN)
  92. # stacked plot for bandwidth
  93. transmission_df["lte_bw_sum"] = transmission_df["bw_sum"] - transmission_df["NR5G_dl_bw"]
  94. transmission_df["nr_bw_sum"] = transmission_df["NR5G_dl_bw"]
  95. # transmission timeline
  96. scaley = 1.5
  97. scalex = 1.0
  98. plt.title("{} with {}".format(transmission_direction, cc_algo))
  99. fig, ax = plt.subplots(2, 1, figsize=[6.4 * scaley, 4.8 * scalex])
  100. fig.subplots_adjust(right=0.75)
  101. fig.suptitle("{} with {}".format(transmission_direction, cc_algo))
  102. ax0 = ax[0]
  103. ax1 = ax0.twinx()
  104. ax2 = ax0.twinx()
  105. #ax2.spines.right.set_position(("axes", 1.22))
  106. ax00 = ax[1]
  107. ax01 = ax00.twinx()
  108. ax02 = ax00.twinx()
  109. # Plot vertical lines
  110. first = True
  111. lte_handovers = transmission_df["Cell_ID"].diff().dropna()
  112. for index, value in lte_handovers.items():
  113. if value > 0:
  114. if first:
  115. ax00.axvline(index, ymin=0, ymax=1, color="skyblue", label="4G Handover")
  116. first = False
  117. else:
  118. ax00.axvline(index, ymin=0, ymax=1, color="skyblue")
  119. first = True
  120. nr_handovers = transmission_df["NR5G_Cell_ID"].diff().dropna()
  121. for index, value in nr_handovers.items():
  122. if value > 0:
  123. if first:
  124. ax00.axvline(index, ymin=0, ymax=1, color="greenyellow", label="5G Handover")
  125. first = False
  126. else:
  127. ax00.axvline(index, ymin=0, ymax=1, color="greenyellow")
  128. ax0.plot(transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd")
  129. ax1.plot(transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT")
  130. ax2.plot(transmission_df["goodput_rolling"], color="blue", linestyle="solid", label="goodput")
  131. ax00.plot(transmission_df["NR5G_RSRQ_(dB)"].dropna(), color="magenta", linestyle="dotted", label="NR RSRQ")
  132. ax01.plot(transmission_df["bw_sum"].dropna(), color="peru", linestyle="solid", label="bandwidth")
  133. ax01.stackplot(transmission_df["lte_bw_sum"], transmission_df["nr_bw_sum"], colors=["lightsteelblue", "cornflowerblue"], labels=["4G", "5G"])
  134. ax02.plot(transmission_df["RSRQ_(dB)"].dropna(), color="purple", linestyle="dotted", label="LTE RSRQ")
  135. ax2.spines.right.set_position(("axes", 1.1))
  136. ax02.spines.right.set_position(("axes", 1.1))
  137. ax0.set_ylim(0, 5000)
  138. ax1.set_ylim(0, 0.3)
  139. ax2.set_ylim(0, 500)
  140. ax00.set_ylim(-25, 0)
  141. ax01.set_ylim(0, 250)
  142. # second dB axis
  143. ax02.set_ylim(-25, 0)
  144. ax02.set_axis_off()
  145. ax00.set_xlabel("arrival time [s]")
  146. ax2.set_ylabel("Goodput [mbps]")
  147. ax00.set_ylabel("LTE/NR RSRQ [dB]")
  148. #ax02.set_ylabel("LTE RSRQ [dB]")
  149. ax1.set_ylabel("sRTT [s]")
  150. ax0.set_ylabel("cwnd")
  151. ax01.set_ylabel("Bandwidth [MHz]")
  152. fig.legend(loc="lower right")
  153. plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", "")))
  154. #except Exception as e:
  155. # print("Error processing file: {}".format(csv))
  156. # print(str(e))
  157. counter += 1
  158. plt.close(fig)
  159. plt.clf()