Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

215 lines
6.1KB

  1. #!/usr/bin/env python3
  2. import multiprocessing
  3. import os
  4. from argparse import ArgumentParser
  5. from math import ceil
  6. from time import sleep
  7. import pandas as pd
  8. import matplotlib.pyplot as plt
  9. from mpl_toolkits import axisartist
  10. from mpl_toolkits.axes_grid1 import host_subplot
  11. def csv_to_dataframe(csv_list, dummy):
  12. global n
  13. global frame_list
  14. transmission_df = None
  15. for csv in csv_list:
  16. tmp_df = pd.read_csv(
  17. "{}{}".format(args.pcap_csv_folder, csv),
  18. dtype=dict(is_retranmission=bool, is_dup_ack=bool),
  19. )
  20. tmp_df["datetime"] = pd.to_datetime(tmp_df["datetime"]) - pd.Timedelta(hours=1)
  21. tmp_df = tmp_df.set_index("datetime")
  22. tmp_df.index = pd.to_datetime(tmp_df.index)
  23. if transmission_df is None:
  24. transmission_df = tmp_df
  25. else:
  26. transmission_df = pd.concat([transmission_df, tmp_df])
  27. n.value += 1
  28. frame_list.append(transmission_df)
  29. from itertools import islice
  30. def chunk(it, size):
  31. it = iter(it)
  32. return iter(lambda: tuple(islice(it, size)), ())
  33. if __name__ == "__main__":
  34. parser = ArgumentParser()
  35. parser.add_argument("-f", "--gps_file", required=True, help="GPS csv file.")
  36. parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
  37. parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.")
  38. parser.add_argument("--save", default=None, help="Location to save pdf file.")
  39. parser.add_argument(
  40. "--show_providerinfo",
  41. default=False,
  42. help="Show providerinfo for map tiles an zoom levels.",
  43. )
  44. parser.add_argument(
  45. "-c",
  46. "--cores",
  47. default=1,
  48. type=int,
  49. help="Number of cores for multiprocessing.",
  50. )
  51. parser.add_argument(
  52. "-i",
  53. "--interval",
  54. default=10,
  55. type=int,
  56. help="Time interval for rolling window.",
  57. )
  58. args = parser.parse_args()
  59. manager = multiprocessing.Manager()
  60. n = manager.Value("i", 0)
  61. frame_list = manager.list()
  62. jobs = []
  63. # load all pcap csv into one dataframe
  64. pcap_csv_list = list()
  65. for filename in os.listdir(args.pcap_csv_folder):
  66. if filename.endswith(".csv") and "tcp" in filename:
  67. pcap_csv_list.append(filename)
  68. parts = chunk(pcap_csv_list, ceil(len(pcap_csv_list) / args.cores))
  69. print("Start processing with {} jobs.".format(args.cores))
  70. for p in parts:
  71. process = multiprocessing.Process(target=csv_to_dataframe, args=(p, "dummy"))
  72. jobs.append(process)
  73. for j in jobs:
  74. j.start()
  75. print("Started all jobs.")
  76. # Ensure all of the processes have finished
  77. finished_job_counter = 0
  78. working = ["|", "/", "-", "\\", "|", "/", "-", "\\"]
  79. w = 0
  80. while len(jobs) != finished_job_counter:
  81. sleep(1)
  82. print(
  83. "\r\t{}{}{}\t Running {} jobs ({} finished). Processed {} out of {} pcap csv files. ({}%) ".format(
  84. working[w],
  85. working[w],
  86. working[w],
  87. len(jobs),
  88. finished_job_counter,
  89. n.value,
  90. len(pcap_csv_list),
  91. round((n.value / len(pcap_csv_list)) * 100, 2),
  92. ),
  93. end="",
  94. )
  95. finished_job_counter = 0
  96. for j in jobs:
  97. if not j.is_alive():
  98. finished_job_counter += 1
  99. if (w + 1) % len(working) == 0:
  100. w = 0
  101. else:
  102. w += 1
  103. print("\r\nSorting table...")
  104. transmission_df = pd.concat(frame_list)
  105. frame_list = None
  106. transmission_df = transmission_df.sort_index()
  107. print("Calculate goodput...")
  108. transmission_df["goodput"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
  109. transmission_df["goodput"] = transmission_df["goodput"].apply(
  110. lambda x: ((x * 8) / args.interval) / 10**6
  111. )
  112. # remove all not needed columns
  113. transmission_df = transmission_df.filter(["goodput", "datetime"])
  114. # read serial csv
  115. serial_df = pd.read_csv(args.serial_file)
  116. serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1)
  117. serial_df = serial_df.set_index("datetime")
  118. serial_df.index = pd.to_datetime(serial_df.index)
  119. transmission_df = pd.merge_asof(
  120. transmission_df,
  121. serial_df,
  122. tolerance=pd.Timedelta("1s"),
  123. right_index=True,
  124. left_index=True,
  125. )
  126. scaley = 1.5
  127. scalex = 1.0
  128. plt.figure(figsize=[6.4 * scaley, 4.8 * scalex])
  129. host = host_subplot(111, axes_class=axisartist.Axes)
  130. plt.subplots_adjust()
  131. # additional y axes
  132. par11 = host.twinx()
  133. par12 = host.twinx()
  134. # par13 = host.twinx()
  135. # axes offset
  136. par12.axis["right"] = par12.new_fixed_axis(loc="right", offset=(60, 0))
  137. # par13.axis["right"] = par13.new_fixed_axis(loc="right", offset=(120, 0))
  138. par11.axis["right"].toggle(all=True)
  139. par12.axis["right"].toggle(all=True)
  140. # par13.axis["right"].toggle(all=True)
  141. host.plot(transmission_df["goodput"], "-", color="blue", label="goodput" )
  142. host.set_xlabel("datetime")
  143. host.set_ylabel("goodput [Mbps]")
  144. #host.set_ylim([0, 13])
  145. #host.set_yscale("log")
  146. #host.set_yscale("log")
  147. #host.set_yscale("log")
  148. #host.set_yscale("log")
  149. par11.plot(transmission_df["downlink_cqi"], "--", color="green", label="CQI")
  150. par11.set_ylabel("CQI")
  151. par11.set_ylim([0, 15])
  152. par12.plot()
  153. if args.save:
  154. plt.savefig("{}timeline_plot.pdf".format(args.save))
  155. else:
  156. plt.show()
  157. plt.clf()
  158. # Get the frequency, PDF and CDF for each value in the series
  159. # Frequency
  160. stats_df = transmission_df \
  161. .groupby("goodput") \
  162. ["goodput"] \
  163. .agg("count") \
  164. .pipe(pd.DataFrame) \
  165. .rename(columns={"goodput": 'frequency'})
  166. # PDF
  167. stats_df['pdf'] = stats_df['frequency'] / sum(stats_df['frequency'])
  168. # CDF
  169. stats_df['cdf'] = stats_df['pdf'].cumsum()
  170. stats_df = stats_df.reset_index()
  171. stats_df.plot(x="goodput", y=["cdf"], grid=True)
  172. if args.save:
  173. plt.savefig("{}cdf_plot.pdf".format(args.save))
  174. else:
  175. plt.show()