選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

255 行
7.5KB

  1. #!/usr/bin/env python3
  2. import multiprocessing
  3. import os
  4. from argparse import ArgumentParser
  5. from math import ceil
  6. from time import sleep
  7. import matplotlib
  8. import pandas as pd
  9. import matplotlib.pyplot as plt
  10. from mpl_toolkits import axisartist
  11. from mpl_toolkits.axes_grid1 import host_subplot
  12. def csv_to_dataframe(csv_list, dummy):
  13. global n
  14. global frame_list
  15. transmission_df = None
  16. for csv in csv_list:
  17. tmp_df = pd.read_csv(
  18. "{}{}".format(args.pcap_csv_folder, csv),
  19. dtype=dict(is_retranmission=bool, is_dup_ack=bool),
  20. )
  21. tmp_df["datetime"] = pd.to_datetime(tmp_df["datetime"]) - pd.Timedelta(hours=1)
  22. tmp_df = tmp_df.set_index("datetime")
  23. tmp_df.index = pd.to_datetime(tmp_df.index)
  24. if transmission_df is None:
  25. transmission_df = tmp_df
  26. else:
  27. transmission_df = pd.concat([transmission_df, tmp_df])
  28. n.value += 1
  29. frame_list.append(transmission_df)
  30. from itertools import islice
  31. def chunk(it, size):
  32. it = iter(it)
  33. return iter(lambda: tuple(islice(it, size)), ())
  34. def plot_cdf(dataframe, column_name):
  35. stats_df = dataframe \
  36. .groupby(column_name) \
  37. [column_name] \
  38. .agg("count") \
  39. .pipe(pd.DataFrame) \
  40. .rename(columns={column_name: "frequency"})
  41. # PDF
  42. stats_df["PDF"] = stats_df["frequency"] / sum(stats_df["frequency"])
  43. # CDF
  44. stats_df["CDF"] = stats_df["PDF"].cumsum()
  45. stats_df = stats_df.reset_index()
  46. stats_df.plot(x=column_name, y=["CDF"], grid=True)
  47. if __name__ == "__main__":
  48. parser = ArgumentParser()
  49. parser.add_argument("-f", "--gps_file", required=True, help="GPS csv file.")
  50. parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
  51. parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.")
  52. parser.add_argument("--save", default=None, help="Location to save pdf file.")
  53. parser.add_argument(
  54. "--show_providerinfo",
  55. default=False,
  56. help="Show providerinfo for map tiles an zoom levels.",
  57. )
  58. parser.add_argument(
  59. "-c",
  60. "--cores",
  61. default=1,
  62. type=int,
  63. help="Number of cores for multiprocessing.",
  64. )
  65. parser.add_argument(
  66. "-i",
  67. "--interval",
  68. default=10,
  69. type=int,
  70. help="Time interval for rolling window.",
  71. )
  72. args = parser.parse_args()
  73. manager = multiprocessing.Manager()
  74. n = manager.Value("i", 0)
  75. frame_list = manager.list()
  76. jobs = []
  77. # load all pcap csv into one dataframe
  78. pcap_csv_list = list()
  79. for filename in os.listdir(args.pcap_csv_folder):
  80. if filename.endswith(".csv") and "tcp" in filename:
  81. pcap_csv_list.append(filename)
  82. parts = chunk(pcap_csv_list, ceil(len(pcap_csv_list) / args.cores))
  83. print("Start processing with {} jobs.".format(args.cores))
  84. for p in parts:
  85. process = multiprocessing.Process(target=csv_to_dataframe, args=(p, "dummy"))
  86. jobs.append(process)
  87. for j in jobs:
  88. j.start()
  89. print("Started all jobs.")
  90. # Ensure all of the processes have finished
  91. finished_job_counter = 0
  92. working = ["|", "/", "-", "\\", "|", "/", "-", "\\"]
  93. w = 0
  94. while len(jobs) != finished_job_counter:
  95. sleep(1)
  96. print(
  97. "\r\t{}{}{}\t Running {} jobs ({} finished). Processed {} out of {} pcap csv files. ({}%) ".format(
  98. working[w],
  99. working[w],
  100. working[w],
  101. len(jobs),
  102. finished_job_counter,
  103. n.value,
  104. len(pcap_csv_list),
  105. round((n.value / len(pcap_csv_list)) * 100, 2),
  106. ),
  107. end="",
  108. )
  109. finished_job_counter = 0
  110. for j in jobs:
  111. if not j.is_alive():
  112. finished_job_counter += 1
  113. if (w + 1) % len(working) == 0:
  114. w = 0
  115. else:
  116. w += 1
  117. print("\r\nSorting table...")
  118. transmission_df = pd.concat(frame_list)
  119. frame_list = None
  120. transmission_df = transmission_df.sort_index()
  121. print("Calculate goodput...")
  122. #print(transmission_df)
  123. # key for columns and level for index
  124. transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum")
  125. #transmission_df["goodput"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
  126. transmission_df["goodput"] = transmission_df["goodput"].apply(
  127. lambda x: ((x * 8) / args.interval) / 10**6
  128. )
  129. # remove all not needed columns
  130. transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt"])
  131. # read serial csv
  132. serial_df = pd.read_csv(args.serial_file)
  133. serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1)
  134. serial_df = serial_df.set_index("datetime")
  135. serial_df.index = pd.to_datetime(serial_df.index)
  136. transmission_df = pd.merge_asof(
  137. transmission_df,
  138. serial_df,
  139. tolerance=pd.Timedelta("1s"),
  140. right_index=True,
  141. left_index=True,
  142. )
  143. cc_algo = transmission_df["congestion_control"].iloc[0]
  144. cc_algo = cc_algo.upper()
  145. transmission_direction = transmission_df["direction"].iloc[0]
  146. # transmission timeline
  147. scaley = 1.5
  148. scalex = 1.0
  149. plt.figure(figsize=[6.4 * scaley, 4.8 * scalex])
  150. plt.title("{} with {}".format(transmission_direction, cc_algo))
  151. host = host_subplot(111, axes_class=axisartist.Axes)
  152. cmap = matplotlib.cm.get_cmap("Set3")
  153. for c in transmission_df["cellID"].unique():
  154. bounds = transmission_df[["cellID"]].groupby("color").agg(["min", "max"]).loc[c]
  155. host.axvspan(bounds.min(), bounds.max() + 1, alpha=0.3, color=cmap.colors[c])
  156. plt.subplots_adjust()
  157. # additional y axes
  158. par11 = host.twinx()
  159. par12 = host.twinx()
  160. # par13 = host.twinx()
  161. # axes offset
  162. par12.axis["right"] = par12.new_fixed_axis(loc="right", offset=(60, 0))
  163. # par13.axis["right"] = par13.new_fixed_axis(loc="right", offset=(120, 0))
  164. par11.axis["right"].toggle(all=True)
  165. par12.axis["right"].toggle(all=True)
  166. # par13.axis["right"].toggle(all=True)
  167. host.plot(transmission_df["goodput"], "-", color="blue", label="goodput")
  168. host.set_xlabel("datetime")
  169. host.set_ylabel("goodput [Mbps]")
  170. par11.plot(transmission_df["downlink_cqi"], "--", color="green", label="CQI")
  171. par11.set_ylabel("CQI")
  172. par11.set_ylim([0, 15])
  173. par12.plot(transmission_df["ach_rtt"], "-.", color="red", label="ACK RTT")
  174. par12.set_ylabel("ACK RTT [s]")
  175. par12.set_ylim([0, 5])
  176. if args.save:
  177. plt.savefig("{}timeline_plot.pdf".format(args.save))
  178. else:
  179. plt.show()
  180. #goodput cdf
  181. plt.clf()
  182. print("Calculate and polt goodput CDF...")
  183. plot_cdf(transmission_df, "goodput")
  184. plt.xlabel("goodput [mbps]")
  185. plt.ylabel("CDF")
  186. plt.legend([cc_algo])
  187. plt.title("{} with {}".format(transmission_direction, cc_algo))
  188. if args.save:
  189. plt.savefig("{}{}_cdf_plot.pdf".format(args.save, "goodput"))
  190. else:
  191. plt.show()
  192. # rtt cdf
  193. plt.clf()
  194. print("Calculate and polt rtt CDF...")
  195. plot_cdf(transmission_df, "ack_rtt")
  196. plt.xlabel("ACK RTT [s]")
  197. plt.ylabel("CDF")
  198. plt.legend([cc_algo])
  199. plt.title("{} with {}".format(transmission_direction, cc_algo))
  200. if args.save:
  201. plt.savefig("{}{}_cdf_plot.pdf".format(args.save, "ack_rtt"))
  202. else:
  203. plt.show()