Nie możesz wybrać więcej, niż 25 tematów Tematy muszą się zaczynać od litery lub cyfry, mogą zawierać myślniki ('-') i mogą mieć do 35 znaków.

316 lines
10KB

  1. #!/usr/bin/env python3
  2. import math
  3. import multiprocessing
  4. import os
  5. from argparse import ArgumentParser
  6. import matplotlib
  7. import numpy as np
  8. import pandas as pd
  9. import matplotlib.pyplot as plt
  10. import seaborn as sns
  11. sns.set()
  12. tex_fonts = {
  13. "pgf.texsystem": "lualatex",
  14. # "legend.fontsize": "x-large",
  15. # "figure.figsize": (15, 5),
  16. "axes.labelsize": 15, # "small",
  17. # "axes.titlesize": "x-large",
  18. "xtick.labelsize": 15, # "small",
  19. "ytick.labelsize": 15, # "small",
  20. "legend.fontsize": 15,
  21. "axes.formatter.use_mathtext": True,
  22. "mathtext.fontset": "dejavusans",
  23. }
  24. # plt.rcParams.update(tex_fonts)
  25. def convert_cellid(value):
  26. if isinstance(value, str):
  27. try:
  28. r = int(value.split(" ")[-1].replace("(", "").replace(")", ""))
  29. return r
  30. except Exception as e:
  31. return -1
  32. else:
  33. return int(-1)
  34. if __name__ == "__main__":
  35. parser = ArgumentParser()
  36. parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
  37. parser.add_argument(
  38. "-p", "--pcap_csv_folder", required=True, help="PCAP csv folder."
  39. )
  40. parser.add_argument("--save", required=True, help="Location to save pdf file.")
  41. parser.add_argument(
  42. "-i",
  43. "--interval",
  44. default=10,
  45. type=int,
  46. help="Time interval for rolling window.",
  47. )
  48. args = parser.parse_args()
  49. pcap_csv_list = list()
  50. for filename in os.listdir(args.pcap_csv_folder):
  51. if filename.endswith(".csv") and "tcp" in filename:
  52. pcap_csv_list.append(filename)
  53. counter = 1
  54. if len(pcap_csv_list) == 0:
  55. print("No CSV files found.")
  56. pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", "")))
  57. for csv in pcap_csv_list:
  58. print(
  59. "\rProcessing {} out of {} CSVs.\t({}%)\t".format(
  60. counter, len(pcap_csv_list), math.floor(counter / len(pcap_csv_list))
  61. )
  62. )
  63. # try:
  64. transmission_df = pd.read_csv(
  65. "{}{}".format(args.pcap_csv_folder, csv),
  66. dtype=dict(is_retranmission=bool, is_dup_ack=bool),
  67. )
  68. transmission_df["datetime"] = pd.to_datetime(
  69. transmission_df["datetime"]
  70. ) - pd.Timedelta(hours=1)
  71. transmission_df = transmission_df.set_index("datetime")
  72. transmission_df.index = pd.to_datetime(transmission_df.index)
  73. transmission_df = transmission_df.sort_index()
  74. # srtt to [s]
  75. transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6)
  76. # key for columns and level for index
  77. transmission_df["goodput"] = (
  78. transmission_df["payload_size"]
  79. .groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval)))
  80. .transform("sum")
  81. )
  82. transmission_df["goodput"] = transmission_df["goodput"].apply(
  83. lambda x: ((x * 8) / args.interval) / 10**6
  84. )
  85. transmission_df["goodput_rolling"] = (
  86. transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
  87. )
  88. transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
  89. lambda x: ((x * 8) / args.interval) / 10**6
  90. )
  91. # set meta values and remove all not needed columns
  92. cc_algo = transmission_df["congestion_control"].iloc[0]
  93. cc_algo = cc_algo.upper()
  94. transmission_direction = transmission_df["direction"].iloc[0]
  95. # transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"])
  96. # read serial csv
  97. serial_df = pd.read_csv(
  98. args.serial_file, converters={"Cell_ID": convert_cellid}
  99. )
  100. serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(
  101. hours=1
  102. )
  103. serial_df = serial_df.set_index("datetime")
  104. serial_df.index = pd.to_datetime(serial_df.index)
  105. serial_df.sort_index()
  106. # print(serial_df["Cell_ID"])
  107. # serial_df["Cell_ID"] = serial_df["Cell_ID"].apply(
  108. # lambda x: int(x.split(" ")[-1].replace("(", "").replace(")", "")))
  109. transmission_df = pd.merge_asof(
  110. transmission_df,
  111. serial_df,
  112. tolerance=pd.Timedelta("1s"),
  113. right_index=True,
  114. left_index=True,
  115. )
  116. transmission_df.index = transmission_df["arrival_time"]
  117. # replace 0 in RSRQ with Nan
  118. transmission_df["NR5G_RSRQ_(dB)"] = transmission_df["NR5G_RSRQ_(dB)"].replace(
  119. 0, np.NaN
  120. )
  121. transmission_df["RSRQ_(dB)"] = transmission_df["RSRQ_(dB)"].replace(0, np.NaN)
  122. # filter active state
  123. for i in range(1, 5):
  124. transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
  125. "LTE_SCC{}_bw".format(i)
  126. ]
  127. mask = transmission_df["LTE_SCC{}_state".format(i)].isin(["ACTIVE"])
  128. transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
  129. "LTE_SCC{}_effective_bw".format(i)
  130. ].where(mask, other=0)
  131. # filter if sc is usesd for uplink
  132. for i in range(1, 5):
  133. mask = transmission_df["LTE_SCC{}_UL_Configured".format(i)].isin([False])
  134. transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
  135. "LTE_SCC{}_effective_bw".format(i)
  136. ].where(mask, other=0)
  137. # sum all effective bandwidth for 5G and 4G
  138. transmission_df["SCC1_NR5G_effective_bw"] = transmission_df[
  139. "SCC1_NR5G_bw"
  140. ].fillna(0)
  141. transmission_df["lte_effective_bw_sum"] = (
  142. transmission_df["LTE_SCC1_effective_bw"].fillna(0)
  143. + transmission_df["LTE_SCC2_effective_bw"].fillna(0)
  144. + transmission_df["LTE_SCC3_effective_bw"].fillna(0)
  145. + transmission_df["LTE_SCC4_effective_bw"].fillna(0)
  146. + transmission_df["LTE_bw"].fillna(0))
  147. transmission_df["nr_effective_bw_sum"] = transmission_df["SCC1_NR5G_effective_bw"]
  148. transmission_df["effective_bw_sum"] = transmission_df["nr_effective_bw_sum"] + transmission_df["lte_effective_bw_sum"]
  149. # transmission timeline
  150. scaley = 1.5
  151. scalex = 1.0
  152. plt.title("{} with {}".format(transmission_direction, cc_algo))
  153. fig, ax = plt.subplots(2, 1, figsize=[6.4 * scaley, 4.8 * scalex])
  154. fig.subplots_adjust(right=0.75)
  155. fig.suptitle("{} with {}".format(transmission_direction, cc_algo))
  156. ax0 = ax[0]
  157. ax1 = ax0.twinx()
  158. ax2 = ax0.twinx()
  159. # ax2.spines.right.set_position(("axes", 1.22))
  160. ax00 = ax[1]
  161. ax01 = ax00.twinx()
  162. ax02 = ax00.twinx()
  163. # Plot vertical lines
  164. first = True
  165. lte_handovers = transmission_df["Cell_ID"].dropna().diff()
  166. for index, value in lte_handovers.items():
  167. if value > 0:
  168. if first:
  169. ax00.axvline(
  170. index, ymin=0, ymax=1, color="skyblue", label="4G Handover"
  171. )
  172. first = False
  173. else:
  174. ax00.axvline(index, ymin=0, ymax=1, color="skyblue")
  175. first = True
  176. nr_handovers = (
  177. transmission_df["NR5G_Cell_ID"].replace(0, np.NaN).dropna().diff()
  178. )
  179. for index, value in nr_handovers.items():
  180. if value > 0:
  181. if first:
  182. ax00.axvline(
  183. index, ymin=0, ymax=1, color="greenyellow", label="5G Handover"
  184. )
  185. first = False
  186. else:
  187. ax00.axvline(index, ymin=0, ymax=1, color="greenyellow")
  188. ax0.plot(
  189. transmission_df["snd_cwnd"].dropna(),
  190. color="lime",
  191. linestyle="dashed",
  192. label="cwnd",
  193. )
  194. ax1.plot(
  195. transmission_df["srtt"].dropna(),
  196. color="red",
  197. linestyle="dashdot",
  198. label="sRTT",
  199. )
  200. ax2.plot(
  201. transmission_df["goodput_rolling"],
  202. color="blue",
  203. linestyle="solid",
  204. label="goodput",
  205. )
  206. # ax2.plot(transmission_df["goodput"], color="blue", linestyle="solid", label="goodput")
  207. ax01.plot(
  208. transmission_df["effective_bw_sum"].dropna(),
  209. color="peru",
  210. linestyle="solid",
  211. label="bandwidth",
  212. )
  213. ax01.plot(
  214. transmission_df["lte_effective_bw_sum"].dropna(),
  215. color="lightsteelblue",
  216. linestyle="solid",
  217. label="4G bandwidth",
  218. alpha=0.5,
  219. )
  220. ax01.plot(
  221. transmission_df["nr_effective_bw_sum"].dropna(),
  222. color="cornflowerblue",
  223. linestyle="solid",
  224. label="5G bandwidth",
  225. alpha=0.5,
  226. )
  227. # ax01.stackplot(transmission_df["arrival_time"].to_list(),
  228. # [transmission_df["lte_bw_sum"].to_list(), transmission_df["nr_bw_sum"].to_list()],
  229. # colors=["lightsteelblue", "cornflowerblue"],
  230. # labels=["4G bandwidth", "5G bandwidth"]
  231. # )
  232. ax02.plot(
  233. transmission_df["RSRQ_(dB)"].dropna(),
  234. color="purple",
  235. linestyle="dotted",
  236. label="LTE RSRQ",
  237. )
  238. ax00.plot(
  239. transmission_df["NR5G_RSRQ_(dB)"].dropna(),
  240. color="magenta",
  241. linestyle="dotted",
  242. label="NR RSRQ",
  243. )
  244. ax2.spines.right.set_position(("axes", 1.1))
  245. ax02.spines.right.set_position(("axes", 1.1))
  246. ax0.set_ylim(0, 5000)
  247. ax1.set_ylim(0, 0.3)
  248. ax2.set_ylim(0, 500)
  249. ax00.set_ylim(-25, 0)
  250. ax01.set_ylim(0, 250)
  251. # second dB axis
  252. ax02.set_ylim(-25, 0)
  253. ax02.set_axis_off()
  254. ax00.set_xlabel("arrival time [s]")
  255. ax2.set_ylabel("Goodput [mbps]")
  256. ax00.set_ylabel("LTE/NR RSRQ [dB]")
  257. # ax02.set_ylabel("LTE RSRQ [dB]")
  258. ax1.set_ylabel("sRTT [s]")
  259. ax0.set_ylabel("cwnd")
  260. ax01.set_ylabel("Bandwidth [MHz]")
  261. fig.legend(loc="lower right")
  262. plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", "")), bbox_inches="tight")
  263. # except Exception as e:
  264. # print("Error processing file: {}".format(csv))
  265. # print(str(e))
  266. counter += 1
  267. plt.close(fig)
  268. plt.clf()