Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

215 lines
6.9KB

  1. #!/usr/bin/env python3
  2. import multiprocessing
  3. import os
  4. import pickle
  5. from argparse import ArgumentParser
  6. from math import ceil
  7. from time import sleep
  8. import matplotlib
  9. import pandas as pd
  10. import matplotlib.pyplot as plt
  11. from mpl_toolkits import axisartist
  12. from mpl_toolkits.axes_grid1 import host_subplot
  13. def csv_to_dataframe(csv_list, folder, dummy):
  14. global n
  15. global frame_list
  16. transmission_df = None
  17. for csv in csv_list:
  18. tmp_df = pd.read_csv(
  19. "{}{}".format(folder, csv),
  20. dtype=dict(is_retranmission=bool, is_dup_ack=bool),
  21. )
  22. tmp_df["datetime"] = pd.to_datetime(tmp_df["datetime"]) - pd.Timedelta(hours=1)
  23. tmp_df = tmp_df.set_index("datetime")
  24. tmp_df.index = pd.to_datetime(tmp_df.index)
  25. if transmission_df is None:
  26. transmission_df = tmp_df
  27. else:
  28. transmission_df = pd.concat([transmission_df, tmp_df])
  29. n.value += 1
  30. frame_list.append(transmission_df)
  31. from itertools import islice
  32. def chunk(it, size):
  33. it = iter(it)
  34. return iter(lambda: tuple(islice(it, size)), ())
  35. def plot_cdf(dataframe, column_name, axis=None):
  36. stats_df = dataframe \
  37. .groupby(column_name) \
  38. [column_name] \
  39. .agg("count") \
  40. .pipe(pd.DataFrame) \
  41. .rename(columns={column_name: "frequency"})
  42. # PDF
  43. stats_df["PDF"] = stats_df["frequency"] / sum(stats_df["frequency"])
  44. # CDF
  45. stats_df["CDF"] = stats_df["PDF"].cumsum()
  46. stats_df = stats_df.reset_index()
  47. if axis:
  48. stats_df.plot(x=column_name, y=["CDF"], grid=True, ax=axis)
  49. else:
  50. stats_df.plot(x=column_name, y=["CDF"], grid=True)
  51. if __name__ == "__main__":
  52. parser = ArgumentParser()
  53. parser.add_argument("-s", "--serials", required=True, help="Serial csv files. Comma separated.")
  54. parser.add_argument("-f", "--folders", required=True, help="PCAP csv folders. Comma separated.")
  55. parser.add_argument("--save", default=None, help="Location to save pdf file.")
  56. parser.add_argument(
  57. "-c",
  58. "--cores",
  59. default=1,
  60. type=int,
  61. help="Number of cores for multiprocessing.",
  62. )
  63. parser.add_argument(
  64. "-i",
  65. "--interval",
  66. default=2,
  67. type=int,
  68. help="Time interval for rolling window.",
  69. )
  70. args = parser.parse_args()
  71. transmission_df_list = list()
  72. for f in args.folders.split(","):
  73. manager = multiprocessing.Manager()
  74. n = manager.Value("i", 0)
  75. frame_list = manager.list()
  76. jobs = []
  77. # load all pcap csv into one dataframe
  78. pcap_csv_list = list()
  79. for filename in os.listdir(f):
  80. if filename.endswith(".csv") and "tcp" in filename:
  81. pcap_csv_list.append(filename)
  82. parts = chunk(pcap_csv_list, ceil(len(pcap_csv_list) / args.cores))
  83. print("Start processing with {} jobs.".format(args.cores))
  84. for p in parts:
  85. process = multiprocessing.Process(target=csv_to_dataframe, args=(p, f, "dummy"))
  86. jobs.append(process)
  87. for j in jobs:
  88. j.start()
  89. print("Started all jobs.")
  90. # Ensure all the processes have finished
  91. finished_job_counter = 0
  92. working = ["|", "/", "-", "\\", "|", "/", "-", "\\"]
  93. w = 0
  94. while len(jobs) != finished_job_counter:
  95. sleep(1)
  96. print(
  97. "\r\t{}{}{}\t Running {} jobs ({} finished). Processed {} out of {} pcap csv files. ({}%) ".format(
  98. working[w],
  99. working[w],
  100. working[w],
  101. len(jobs),
  102. finished_job_counter,
  103. n.value,
  104. len(pcap_csv_list),
  105. round((n.value / len(pcap_csv_list)) * 100, 2),
  106. ),
  107. end="",
  108. )
  109. finished_job_counter = 0
  110. for j in jobs:
  111. if not j.is_alive():
  112. finished_job_counter += 1
  113. if (w + 1) % len(working) == 0:
  114. w = 0
  115. else:
  116. w += 1
  117. print("\r\nSorting table...")
  118. transmission_df = pd.concat(frame_list)
  119. frame_list = None
  120. transmission_df = transmission_df.sort_index()
  121. print("Calculate goodput...")
  122. transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10 ** 6)
  123. # key for columns and level for index
  124. transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum")
  125. transmission_df["goodput"] = transmission_df["goodput"].apply(
  126. lambda x: ((x * 8) / args.interval) / 10**6
  127. )
  128. transmission_df["goodput_rolling"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
  129. transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
  130. lambda x: ((x * 8) / args.interval) / 10 ** 6
  131. )
  132. # set meta values
  133. cc_algo = transmission_df["congestion_control"].iloc[0]
  134. cc_algo = cc_algo.upper()
  135. transmission_direction = transmission_df["direction"].iloc[0]
  136. # read serial csv
  137. #serial_df = pd.read_csv(args.serial_file)
  138. #serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1)
  139. #serial_df = serial_df.set_index("datetime")
  140. #serial_df.index = pd.to_datetime(serial_df.index)
  141. #serial_df.sort_index()
  142. #transmission_df = pd.merge_asof(
  143. # transmission_df,
  144. # serial_df,
  145. # tolerance=pd.Timedelta("1s"),
  146. # right_index=True,
  147. # left_index=True,
  148. #)
  149. transmission_df_list.append(dict(
  150. df=transmission_df,
  151. cc_algo=cc_algo,
  152. transmission_direction=transmission_direction
  153. ))
  154. del transmission_df
  155. # Plot sRTT CDF
  156. legend = list()
  157. plot_cdf(transmission_df_list[0]["df"], "srtt")
  158. for i in range(1, len(transmission_df_list)):
  159. plot_cdf(transmission_df_list[i]["df"], "srtt", axis=plt.gca())
  160. legend.append(transmission_df_list[i]["cc_algo"])
  161. plt.xscale("log")
  162. plt.xlabel("sRTT [s]")
  163. plt.ylabel("CDF")
  164. plt.legend(legend)
  165. plt.title("{}".format(transmission_df_list[0]["transmission_direction"]))
  166. plt.savefig("{}{}_cdf_compare_plot.pdf".format(args.save, "srtt"))
  167. plt.clf()
  168. # Plot goodput CDF
  169. legend = list()
  170. plot_cdf(transmission_df_list[0]["df"], "goodput")
  171. for i in range(1, len(transmission_df_list)):
  172. plot_cdf(transmission_df_list[i]["df"], "goodput", axis=plt.gca())
  173. legend.append(transmission_df_list[i]["cc_algo"])
  174. plt.xlabel("goodput [mbps]")
  175. plt.ylabel("CDF")
  176. plt.legend(legend)
  177. plt.title("{}".format(transmission_df_list[0]["transmission_direction"]))
  178. plt.savefig("{}{}_cdf_compare_plot.pdf".format(args.save, "goodput"))