You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

211 satır
6.0KB

  1. #!/usr/bin/env python3
  2. import multiprocessing
  3. import os
  4. from argparse import ArgumentParser
  5. from math import ceil
  6. from time import sleep
  7. import pandas as pd
  8. import geopandas as gpd
  9. import contextily as cx
  10. import matplotlib.pyplot as plt
  11. from mpl_toolkits import axisartist
  12. from mpl_toolkits.axes_grid1 import host_subplot
  13. from util import chunk_list
  14. def csv_to_dataframe(csv_list, dummy):
  15. global n
  16. global frame_list
  17. transmission_df = None
  18. for csv in csv_list:
  19. tmp_df = pd.read_csv(
  20. "{}{}".format(args.pcap_csv_folder, csv),
  21. dtype=dict(is_retranmission=bool, is_dup_ack=bool),
  22. )
  23. tmp_df["datetime"] = pd.to_datetime(tmp_df["datetime"]) - pd.Timedelta(hours=1)
  24. tmp_df = tmp_df.set_index("datetime")
  25. tmp_df.index = pd.to_datetime(tmp_df.index)
  26. if transmission_df is None:
  27. transmission_df = tmp_df
  28. else:
  29. transmission_df = pd.concat([transmission_df, tmp_df])
  30. n.value += 1
  31. frame_list.append(transmission_df)
  32. from itertools import islice
  33. def chunk(it, size):
  34. it = iter(it)
  35. return iter(lambda: tuple(islice(it, size)), ())
  36. if __name__ == "__main__":
  37. parser = ArgumentParser()
  38. parser.add_argument("-f", "--gps_file", required=True, help="GPS csv file.")
  39. parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
  40. parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.")
  41. parser.add_argument("--save", default=None, help="Location to save pdf file.")
  42. parser.add_argument(
  43. "--show_providerinfo",
  44. default=False,
  45. help="Show providerinfo for map tiles an zoom levels.",
  46. )
  47. parser.add_argument(
  48. "-c",
  49. "--cores",
  50. default=1,
  51. type=int,
  52. help="Number of cores for multiprocessing.",
  53. )
  54. parser.add_argument(
  55. "-i",
  56. "--interval",
  57. default=10,
  58. type=int,
  59. help="Time interval for rolling window.",
  60. )
  61. args = parser.parse_args()
  62. manager = multiprocessing.Manager()
  63. n = manager.Value("i", 0)
  64. frame_list = manager.list()
  65. jobs = []
  66. # load all pcap csv into one dataframe
  67. pcap_csv_list = list()
  68. for filename in os.listdir(args.pcap_csv_folder):
  69. if filename.endswith(".csv") and "tcp" in filename:
  70. pcap_csv_list.append(filename)
  71. parts = chunk(pcap_csv_list, ceil(len(pcap_csv_list) / args.cores))
  72. print("Start processing with {} jobs.".format(args.cores))
  73. for p in parts:
  74. process = multiprocessing.Process(target=csv_to_dataframe, args=(p, "dummy"))
  75. jobs.append(process)
  76. for j in jobs:
  77. j.start()
  78. print("Started all jobs.")
  79. # Ensure all of the processes have finished
  80. finished_job_counter = 0
  81. working = ["|", "/", "-", "\\", "|", "/", "-", "\\"]
  82. w = 0
  83. while len(jobs) != finished_job_counter:
  84. sleep(1)
  85. print(
  86. "\r\t{}{}{}\t Running {} jobs ({} finished). Processed {} out of {} pcap csv files. ({}%) ".format(
  87. working[w],
  88. working[w],
  89. working[w],
  90. len(jobs),
  91. finished_job_counter,
  92. n.value,
  93. len(pcap_csv_list),
  94. round((n.value / len(pcap_csv_list)) * 100, 2),
  95. ),
  96. end="",
  97. )
  98. finished_job_counter = 0
  99. for j in jobs:
  100. if not j.is_alive():
  101. finished_job_counter += 1
  102. if (w + 1) % len(working) == 0:
  103. w = 0
  104. else:
  105. w += 1
  106. print("\r\nSorting table...")
  107. transmission_df = pd.concat(frame_list)
  108. frame_list = None
  109. transmission_df = transmission_df.sort_index()
  110. print("Calculate goodput...")
  111. transmission_df["goodput"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
  112. transmission_df["goodput"] = transmission_df["goodput"].apply(
  113. lambda x: ((x * 8) / args.interval) / 10**6
  114. )
  115. # load dataframe an put it into geopandas
  116. df = pd.read_csv(args.gps_file)
  117. df["kmh"] = df["speed (knots)"].apply(lambda x: x * 1.852)
  118. df = df.set_index("datetime")
  119. df.index = pd.to_datetime(df.index)
  120. gdf = gpd.GeoDataFrame(
  121. df,
  122. geometry=gpd.points_from_xy(df["longitude"], df["latitude"]),
  123. crs="EPSG:4326",
  124. )
  125. gdf = pd.merge_asof(
  126. gdf,
  127. transmission_df,
  128. tolerance=pd.Timedelta("10s"),
  129. right_index=True,
  130. left_index=True,
  131. )
  132. # read serial csv
  133. serial_df = pd.read_csv(args.serial_file)
  134. serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1)
  135. serial_df = serial_df.set_index("datetime")
  136. serial_df.index = pd.to_datetime(serial_df.index)
  137. gdf = pd.merge_asof(
  138. gdf,
  139. serial_df,
  140. tolerance=pd.Timedelta("1s"),
  141. right_index=True,
  142. left_index=True,
  143. )
  144. # format to needed format and add basemap as background
  145. df_wm = gdf.to_crs(epsg=3857)
  146. scaley = 1.5
  147. scalex = 1.0
  148. plt.figure(figsize=[6.4 * scaley, 4.8 * scalex])
  149. host = host_subplot(111, axes_class=axisartist.Axes)
  150. plt.subplots_adjust()
  151. # additional y axes
  152. par11 = host.twinx()
  153. par12 = host.twinx()
  154. # par13 = host.twinx()
  155. # axes offset
  156. par12.axis["right"] = par12.new_fixed_axis(loc="right", offset=(60, 0))
  157. # par13.axis["right"] = par13.new_fixed_axis(loc="right", offset=(120, 0))
  158. par11.axis["right"].toggle(all=True)
  159. par12.axis["right"].toggle(all=True)
  160. # par13.axis["right"].toggle(all=True)
  161. host.plot(gdf["goodput"], "-", color="blue", label="goodput" )
  162. host.set_xlabel("datetime")
  163. host.set_ylabel("goodput [Mbps]")
  164. #host.set_ylim([0, 13])
  165. #host.set_yscale("log")
  166. #host.set_yscale("log")
  167. #host.set_yscale("log")
  168. #host.set_yscale("log")
  169. par11.plot(gdf["downlink_cqi"], "--", color="green", label="CQI")
  170. par11.set_ylabel("CQI")
  171. par11.set_ylim([0, 15])
  172. par12.plot()
  173. if args.save:
  174. plt.savefig("{}timeline_plot.pdf".format(args.save))
  175. else:
  176. plt.show()