No puede seleccionar más de 25 temas Los temas deben comenzar con una letra o número, pueden incluir guiones ('-') y pueden tener hasta 35 caracteres de largo.

286 líneas
9.6KB

  1. #!/usr/bin/env python3
  2. import math
  3. import multiprocessing
  4. import os
  5. from argparse import ArgumentParser
  6. import matplotlib
  7. import numpy as np
  8. import pandas as pd
  9. import matplotlib.pyplot as plt
  10. import seaborn as sns
  11. sns.set()
  12. #sns.set(font_scale=1.5)
  13. tex_fonts = {
  14. "pgf.texsystem": "lualatex",
  15. # "legend.fontsize": "x-large",
  16. # "figure.figsize": (15, 5),
  17. "axes.labelsize": 15, # "small",
  18. # "axes.titlesize": "x-large",
  19. "xtick.labelsize": 15, # "small",
  20. "ytick.labelsize": 15, # "small",
  21. "legend.fontsize": 15,
  22. "axes.formatter.use_mathtext": True,
  23. "mathtext.fontset": "dejavusans",
  24. }
  25. # plt.rcParams.update(tex_fonts)
  26. def convert_cellid(value):
  27. if isinstance(value, str):
  28. try:
  29. r = int(value.split(" ")[-1].replace("(", "").replace(")", ""))
  30. return r
  31. except Exception as e:
  32. return -1
  33. else:
  34. return int(-1)
  35. if __name__ == "__main__":
  36. parser = ArgumentParser()
  37. parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
  38. parser.add_argument(
  39. "-p", "--pcap_csv_folder", required=True, help="PCAP csv folder."
  40. )
  41. parser.add_argument("--save", required=True, help="Location to save pdf file.")
  42. parser.add_argument("--fancy", action="store_true", help="Create fancy plot.")
  43. parser.add_argument(
  44. "-i",
  45. "--interval",
  46. default=10,
  47. type=int,
  48. help="Time interval for rolling window.",
  49. )
  50. args = parser.parse_args()
  51. pcap_csv_list = list()
  52. for filename in os.listdir(args.pcap_csv_folder):
  53. if filename.endswith(".csv") and "tcp" in filename:
  54. pcap_csv_list.append(filename)
  55. counter = 1
  56. if len(pcap_csv_list) == 0:
  57. print("No CSV files found.")
  58. pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", "")))
  59. for csv in pcap_csv_list:
  60. print(
  61. "\rProcessing {} out of {} CSVs.\t({}%)\t".format(
  62. counter, len(pcap_csv_list), math.floor(counter / len(pcap_csv_list))
  63. )
  64. )
  65. # try:
  66. transmission_df = pd.read_csv(
  67. "{}{}".format(args.pcap_csv_folder, csv),
  68. dtype=dict(is_retranmission=bool, is_dup_ack=bool),
  69. )
  70. transmission_df.index = pd.to_datetime(transmission_df.index)
  71. transmission_df = transmission_df.sort_index()
  72. # srtt to [s]
  73. transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10 ** 6)
  74. # key for columns and level for index
  75. transmission_df["goodput"] = (
  76. transmission_df["payload_size"]
  77. .groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval)))
  78. .transform("sum")
  79. )
  80. transmission_df["goodput"] = transmission_df["goodput"].apply(
  81. lambda x: ((x * 8) / args.interval) / 10 ** 6
  82. )
  83. transmission_df["goodput_rolling"] = (
  84. transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
  85. )
  86. transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
  87. lambda x: ((x * 8) / args.interval) / 10 ** 6
  88. )
  89. # set meta values and remove all not needed columns
  90. cc_algo = transmission_df["congestion_control"].iloc[0]
  91. cc_algo = cc_algo.upper()
  92. transmission_direction = transmission_df["direction"].iloc[0]
  93. # transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"])
  94. # read serial csv
  95. serial_df = pd.read_csv(
  96. args.serial_file, converters={"Cell_ID": convert_cellid}
  97. )
  98. serial_df = serial_df.set_index("datetime")
  99. serial_df.index = pd.to_datetime(serial_df.index)
  100. serial_df.sort_index()
  101. transmission_df = pd.merge_asof(
  102. transmission_df,
  103. serial_df,
  104. tolerance=pd.Timedelta("1milliseconds"),
  105. right_index=True,
  106. left_index=True,
  107. )
  108. transmission_df.index = transmission_df["arrival_time"]
  109. # filter active state
  110. for i in range(1, 5):
  111. transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
  112. "LTE_SCC{}_bw".format(i)
  113. ]
  114. mask = transmission_df["LTE_SCC{}_state".format(i)].isin(["ACTIVE"])
  115. transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
  116. "LTE_SCC{}_effective_bw".format(i)
  117. ].where(mask, other=0)
  118. # filter if sc is usesd for uplink
  119. for i in range(1, 5):
  120. mask = transmission_df["LTE_SCC{}_UL_Configured".format(i)].isin([False])
  121. transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
  122. "LTE_SCC{}_effective_bw".format(i)
  123. ].where(mask, other=0)
  124. # sum all effective bandwidth for 5G and 4G
  125. transmission_df["SCC1_NR5G_effective_bw"] = transmission_df[
  126. "SCC1_NR5G_bw"
  127. ].fillna(0)
  128. transmission_df["lte_effective_bw_sum"] = (
  129. transmission_df["LTE_SCC1_effective_bw"].fillna(0)
  130. + transmission_df["LTE_SCC2_effective_bw"].fillna(0)
  131. + transmission_df["LTE_SCC3_effective_bw"].fillna(0)
  132. + transmission_df["LTE_SCC4_effective_bw"].fillna(0)
  133. + transmission_df["LTE_bw"].fillna(0))
  134. transmission_df["nr_effective_bw_sum"] = transmission_df["SCC1_NR5G_effective_bw"]
  135. transmission_df["effective_bw_sum"] = transmission_df["nr_effective_bw_sum"] + transmission_df[
  136. "lte_effective_bw_sum"]
  137. # transmission timeline
  138. scaley = 1.5
  139. scalex = 1.0
  140. fig, ax = plt.subplots(2, 1, figsize=[6.4 * scaley, 4.8 * scalex])
  141. fig.subplots_adjust(right=0.75)
  142. if not args.fancy:
  143. plt.title("{} with {}".format(transmission_direction, cc_algo))
  144. fig.suptitle("{} with {}".format(transmission_direction, cc_algo))
  145. ax0 = ax[0]
  146. ax1 = ax0.twinx()
  147. ax2 = ax0.twinx()
  148. # ax2.spines.right.set_position(("axes", 1.22))
  149. ax00 = ax[1]
  150. snd_plot = ax0.plot(
  151. transmission_df["snd_cwnd"].dropna(),
  152. color="lime",
  153. linestyle="dashed",
  154. label="cwnd",
  155. )
  156. srtt_plot = ax1.plot(
  157. transmission_df["srtt"].dropna(),
  158. color="red",
  159. linestyle="dashdot",
  160. label="sRTT",
  161. )
  162. goodput_plot = ax2.plot(
  163. transmission_df["goodput_rolling"],
  164. color="blue",
  165. linestyle="solid",
  166. label="goodput",
  167. )
  168. # sum all effective bandwidth for 5G and 4G
  169. transmission_df["SCC1_NR5G_effective_bw"] = transmission_df["SCC1_NR5G_bw"].fillna(0)
  170. transmission_df["effective_bw_sum"] = (
  171. transmission_df["SCC1_NR5G_effective_bw"]
  172. + transmission_df["LTE_SCC1_effective_bw"]
  173. + transmission_df["LTE_SCC2_effective_bw"]
  174. + transmission_df["LTE_SCC3_effective_bw"]
  175. + transmission_df["LTE_SCC4_effective_bw"]
  176. + transmission_df["LTE_bw"]
  177. )
  178. bw_cols = [
  179. "SCC1_NR5G_effective_bw",
  180. "LTE_bw",
  181. "LTE_SCC1_effective_bw",
  182. "LTE_SCC2_effective_bw",
  183. "LTE_SCC3_effective_bw",
  184. "LTE_SCC4_effective_bw",
  185. ]
  186. transmission_df.to_csv("{}{}_plot.csv".format(args.save, csv.replace(".csv", "")))
  187. exit()
  188. ax_stacked = transmission_df[bw_cols].plot.area(stacked=True, linewidth=0, ax=ax00)
  189. ax00.set_ylabel("bandwidth [MHz]")
  190. #ax.set_xlabel("time [minutes]")
  191. #ax00.set_xlim([0, transmission_df.index[-1]])
  192. ax00.xaxis.grid(False)
  193. ax2.spines.right.set_position(("axes", 1.1))
  194. ax0.set_ylim(0, 5000)
  195. ax1.set_ylim(0, 0.3)
  196. ax2.set_ylim(0, 600)
  197. #ax00.set_ylim(-25, 0)
  198. ax00.set_xlabel("arrival time [s]")
  199. ax2.set_ylabel("Goodput [mbps]")
  200. #ax00.set_ylabel("LTE/NR RSRQ [dB]")
  201. # ax02.set_ylabel("LTE RSRQ [dB]")
  202. ax1.set_ylabel("sRTT [s]")
  203. ax0.set_ylabel("cwnd [MSS]")
  204. if args.fancy:
  205. legend_frame = False
  206. ax0.set_xlim([0, transmission_df.index[-1]])
  207. ax00.set_xlim([0, transmission_df.index[-1]])
  208. # added these three lines
  209. lns_ax0 = snd_plot + srtt_plot + goodput_plot
  210. labs_ax0 = [l.get_label() for l in lns_ax0]
  211. ax2.legend(lns_ax0, labs_ax0, ncols=9, fontsize=9, loc="upper right", frameon=legend_frame)
  212. #ax0.set_zorder(100)
  213. #lns_ax00 = [ax_stacked]
  214. #labs_ax00 = ["5G bandwidth", "4G bandwidth"]
  215. #ax00.legend(lns_ax00, labs_ax00, ncols=3, fontsize=9, loc="upper center", frameon=legend_frame)
  216. L = ax00.legend(ncols=3, fontsize=9, frameon=False)
  217. L.get_texts()[0].set_text("5G main")
  218. L.get_texts()[1].set_text("4G main")
  219. L.get_texts()[2].set_text("4G SCC 1")
  220. L.get_texts()[3].set_text("4G SCC 2")
  221. L.get_texts()[4].set_text("4G SCC 3")
  222. L.get_texts()[5].set_text("4G SCC 4")
  223. #ax00.set_zorder(100)
  224. plt.savefig("{}{}_plot.eps".format(args.save, csv.replace(".csv", "")), bbox_inches="tight")
  225. else:
  226. fig.legend(loc="lower right")
  227. plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", "")), bbox_inches="tight")
  228. # except Exception as e:
  229. # print("Error processing file: {}".format(csv))
  230. # print(str(e))
  231. counter += 1
  232. plt.close(fig)
  233. plt.clf()