您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

199 行
7.8KB

  1. #!/usr/bin/env python3
  2. import math
  3. import multiprocessing
  4. import os
  5. import pickle
  6. from argparse import ArgumentParser
  7. import matplotlib
  8. import pandas as pd
  9. import matplotlib.pyplot as plt
  10. def convert_bandwidth(value):
  11. if value == 0:
  12. return 1.4
  13. elif value == 1:
  14. return 3
  15. elif value == 2:
  16. return 5
  17. elif value == 3:
  18. return 10
  19. elif value == 4:
  20. return 15
  21. elif value == 5:
  22. return 20
  23. else:
  24. return 0
  25. if __name__ == "__main__":
  26. parser = ArgumentParser()
  27. parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
  28. parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.")
  29. parser.add_argument("--save", default=None, help="Location to save pdf file.")
  30. parser.add_argument(
  31. "-i",
  32. "--interval",
  33. default=10,
  34. type=int,
  35. help="Time interval for rolling window.",
  36. )
  37. args = parser.parse_args()
  38. manager = multiprocessing.Manager()
  39. n = manager.Value("i", 0)
  40. frame_list = manager.list()
  41. jobs = []
  42. # load all pcap csv into one dataframe
  43. pcap_csv_list = list()
  44. for filename in os.listdir(args.pcap_csv_folder):
  45. if filename.endswith(".csv") and "tcp" in filename:
  46. pcap_csv_list.append(filename)
  47. counter = 1
  48. if len(pcap_csv_list) == 0:
  49. print("No CSV files found.")
  50. pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", "")))
  51. for csv in pcap_csv_list:
  52. print("\rProcessing {} out of {} CSVs.\t({}%)\t".format(counter, len(pcap_csv_list), math.floor(counter/len(pcap_csv_list))))
  53. try:
  54. transmission_df = pd.read_csv(
  55. "{}{}".format(args.pcap_csv_folder, csv),
  56. dtype=dict(is_retranmission=bool, is_dup_ack=bool),
  57. )
  58. transmission_df["datetime"] = pd.to_datetime(transmission_df["datetime"]) - pd.Timedelta(hours=1)
  59. transmission_df = transmission_df.set_index("datetime")
  60. transmission_df.index = pd.to_datetime(transmission_df.index)
  61. transmission_df = transmission_df.sort_index()
  62. # srtt to [s]
  63. transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6)
  64. # key for columns and level for index
  65. transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum")
  66. transmission_df["goodput"] = transmission_df["goodput"].apply(
  67. lambda x: ((x * 8) / args.interval) / 10**6
  68. )
  69. transmission_df["goodput_rolling"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
  70. transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
  71. lambda x: ((x * 8) / args.interval) / 10 ** 6
  72. )
  73. # set meta values and remove all not needed columns
  74. cc_algo = transmission_df["congestion_control"].iloc[0]
  75. cc_algo = cc_algo.upper()
  76. transmission_direction = transmission_df["direction"].iloc[0]
  77. #transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"])
  78. # read serial csv
  79. serial_df = pd.read_csv(args.serial_file,
  80. converters={"UL_bandwidth": convert_bandwidth, "DL_bandwidth": convert_bandwidth},
  81. )
  82. serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1)
  83. serial_df = serial_df.set_index("datetime")
  84. serial_df.index = pd.to_datetime(serial_df.index)
  85. serial_df.sort_index()
  86. transmission_df = pd.merge_asof(
  87. transmission_df,
  88. serial_df,
  89. tolerance=pd.Timedelta("1s"),
  90. right_index=True,
  91. left_index=True,
  92. )
  93. # transmission timeline
  94. scaley = 1.5
  95. scalex = 1.0
  96. fig, ax = plt.subplots(figsize=[6.4 * scaley, 4.8 * scalex])
  97. plt.title("{} with {}".format(transmission_direction, cc_algo))
  98. fig.subplots_adjust(right=0.75)
  99. twin1 = ax.twinx()
  100. twin2 = ax.twinx()
  101. twin3 = ax.twinx()
  102. twin4 = ax.twinx()
  103. # Offset the right spine of twin2. The ticks and label have already been
  104. # placed on the right by twinx above.
  105. twin2.spines.right.set_position(("axes", 1.1))
  106. twin3.spines.right.set_position(("axes", 1.2))
  107. twin4.spines.right.set_position(("axes", 1.3))
  108. # create list fo color indices
  109. transmission_df["index"] = transmission_df.index
  110. color_dict = dict()
  111. color_list = list()
  112. i = 0
  113. for cell_id in transmission_df["cellID"]:
  114. if cell_id not in color_dict:
  115. color_dict[cell_id] = i
  116. i += 1
  117. color_list.append(color_dict[cell_id])
  118. transmission_df["cell_color"] = color_list
  119. color_dict = None
  120. color_list = None
  121. cmap = matplotlib.cm.get_cmap("Set3")
  122. unique_cells = transmission_df["cell_color"].unique()
  123. color_list = cmap.colors * (round(len(unique_cells) / len(cmap.colors)) + 1)
  124. for c in transmission_df["cell_color"].unique():
  125. bounds = transmission_df[["index", "cell_color"]].groupby("cell_color").agg(["min", "max"]).loc[c]
  126. ax.axvspan(bounds.min(), bounds.max(), alpha=0.3, color=color_list[c])
  127. p4, = twin3.plot(transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd")
  128. p3, = twin2.plot(transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT")
  129. p1, = ax.plot(transmission_df["goodput_rolling"], color="blue", linestyle="solid", label="goodput")
  130. p2, = twin1.plot(transmission_df["downlink_cqi"].dropna(), color="magenta", linestyle="dotted", label="CQI")
  131. p5, = twin4.plot(transmission_df["DL_bandwidth"].dropna(), color="peru", linestyle="dotted", label="DL_bandwidth")
  132. ax.set_xlim(transmission_df["index"].min(), transmission_df["index"].max())
  133. ax.set_ylim(0, 500)
  134. twin1.set_ylim(0, 15)
  135. twin2.set_ylim(0, 0.2) #twin2.set_ylim(0, transmission_df["ack_rtt"].max())
  136. twin3.set_ylim(0, transmission_df["snd_cwnd"].max() + 10)
  137. twin4.set_ylim(0, 21)
  138. ax.set_xlabel("arrival time")
  139. ax.set_ylabel("Goodput [mbps]")
  140. twin1.set_ylabel("CQI")
  141. twin2.set_ylabel("sRTT [s]")
  142. twin3.set_ylabel("cwnd")
  143. twin4.set_ylabel("DL_bandwidth")
  144. ax.yaxis.label.set_color(p1.get_color())
  145. twin1.yaxis.label.set_color(p2.get_color())
  146. twin2.yaxis.label.set_color(p3.get_color())
  147. twin3.yaxis.label.set_color(p4.get_color())
  148. twin4.yaxis.label.set_color(p5.get_color())
  149. tkw = dict(size=4, width=1.5)
  150. ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
  151. twin1.tick_params(axis='y', colors=p2.get_color(), **tkw)
  152. twin2.tick_params(axis='y', colors=p3.get_color(), **tkw)
  153. twin3.tick_params(axis='y', colors=p4.get_color(), **tkw)
  154. twin4.tick_params(axis='y', colors=p5.get_color(), **tkw)
  155. ax.tick_params(axis='x', **tkw)
  156. #ax.legend(handles=[p1, p2, p3])
  157. if args.save:
  158. plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", "")))
  159. except Exception as e:
  160. print("Error processing file: {}".format(csv))
  161. print(str(e))
  162. counter += 1
  163. plt.clf()