Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

298 lines
10KB

  1. #!/usr/bin/env python3
  2. import math
  3. import multiprocessing
  4. import os
  5. from argparse import ArgumentParser
  6. import matplotlib
  7. import numpy as np
  8. import pandas as pd
  9. import matplotlib.pyplot as plt
  10. import seaborn as sns
  11. sns.set()
  12. #sns.set(font_scale=1.5)
  13. tex_fonts = {
  14. "pgf.texsystem": "lualatex",
  15. # "legend.fontsize": "x-large",
  16. # "figure.figsize": (15, 5),
  17. "axes.labelsize": 15, # "small",
  18. # "axes.titlesize": "x-large",
  19. "xtick.labelsize": 15, # "small",
  20. "ytick.labelsize": 15, # "small",
  21. "legend.fontsize": 15,
  22. "axes.formatter.use_mathtext": True,
  23. "mathtext.fontset": "dejavusans",
  24. }
  25. # plt.rcParams.update(tex_fonts)
  26. def convert_cellid(value):
  27. if isinstance(value, str):
  28. try:
  29. r = int(value.split(" ")[-1].replace("(", "").replace(")", ""))
  30. return r
  31. except Exception as e:
  32. return -1
  33. else:
  34. return int(-1)
  35. if __name__ == "__main__":
  36. parser = ArgumentParser()
  37. parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
  38. parser.add_argument(
  39. "-p", "--pcap_csv_folder", required=True, help="PCAP csv folder."
  40. )
  41. parser.add_argument("--save", required=True, help="Location to save pdf file.")
  42. parser.add_argument("--fancy", action="store_true", help="Create fancy plot.")
  43. parser.add_argument(
  44. "-i",
  45. "--interval",
  46. default=10,
  47. type=int,
  48. help="Time interval for rolling window.",
  49. )
  50. args = parser.parse_args()
  51. pcap_csv_list = list()
  52. for filename in os.listdir(args.pcap_csv_folder):
  53. if filename.endswith(".csv") and "tcp" in filename:
  54. pcap_csv_list.append(filename)
  55. counter = 1
  56. if len(pcap_csv_list) == 0:
  57. print("No CSV files found.")
  58. pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", "")))
  59. for csv in pcap_csv_list:
  60. print(
  61. "\rProcessing {} out of {} CSVs.\t({}%)\t".format(
  62. counter, len(pcap_csv_list), math.floor(counter / len(pcap_csv_list))
  63. )
  64. )
  65. # try:
  66. transmission_df = pd.read_csv(
  67. "{}{}".format(args.pcap_csv_folder, csv),
  68. dtype=dict(is_retranmission=bool, is_dup_ack=bool),
  69. )
  70. transmission_df["datetime"] = pd.to_datetime(
  71. transmission_df["datetime"]
  72. ) - pd.Timedelta(hours=1)
  73. transmission_df = transmission_df.set_index("datetime")
  74. transmission_df.index = pd.to_datetime(transmission_df.index)
  75. transmission_df = transmission_df.sort_index()
  76. # srtt to [s]
  77. transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10 ** 6)
  78. # key for columns and level for index
  79. transmission_df["goodput"] = (
  80. transmission_df["payload_size"]
  81. .groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval)))
  82. .transform("sum")
  83. )
  84. transmission_df["goodput"] = transmission_df["goodput"].apply(
  85. lambda x: ((x * 8) / args.interval) / 10 ** 6
  86. )
  87. transmission_df["goodput_rolling"] = (
  88. transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
  89. )
  90. transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
  91. lambda x: ((x * 8) / args.interval) / 10 ** 6
  92. )
  93. # set meta values and remove all not needed columns
  94. cc_algo = transmission_df["congestion_control"].iloc[0]
  95. cc_algo = cc_algo.upper()
  96. transmission_direction = transmission_df["direction"].iloc[0]
  97. # transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"])
  98. # read serial csv
  99. serial_df = pd.read_csv(
  100. args.serial_file, converters={"Cell_ID": convert_cellid}
  101. )
  102. serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(
  103. hours=1
  104. )
  105. serial_df = serial_df.set_index("datetime")
  106. serial_df.index = pd.to_datetime(serial_df.index)
  107. serial_df.sort_index()
  108. # print(serial_df["Cell_ID"])
  109. # serial_df["Cell_ID"] = serial_df["Cell_ID"].apply(
  110. # lambda x: int(x.split(" ")[-1].replace("(", "").replace(")", "")))
  111. transmission_df = pd.merge_asof(
  112. transmission_df,
  113. serial_df,
  114. tolerance=pd.Timedelta("1ms"),
  115. right_index=True,
  116. left_index=True,
  117. )
  118. transmission_df.index = transmission_df["arrival_time"]
  119. # filter active state
  120. for i in range(1, 5):
  121. transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
  122. "LTE_SCC{}_bw".format(i)
  123. ]
  124. mask = transmission_df["LTE_SCC{}_state".format(i)].isin(["ACTIVE"])
  125. transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
  126. "LTE_SCC{}_effective_bw".format(i)
  127. ].where(mask, other=0)
  128. # filter if sc is usesd for uplink
  129. for i in range(1, 5):
  130. mask = transmission_df["LTE_SCC{}_UL_Configured".format(i)].isin([False])
  131. transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
  132. "LTE_SCC{}_effective_bw".format(i)
  133. ].where(mask, other=0)
  134. # sum all effective bandwidth for 5G and 4G
  135. transmission_df["SCC1_NR5G_effective_bw"] = transmission_df[
  136. "SCC1_NR5G_bw"
  137. ].fillna(0)
  138. transmission_df["lte_effective_bw_sum"] = (
  139. transmission_df["LTE_SCC1_effective_bw"].fillna(0)
  140. + transmission_df["LTE_SCC2_effective_bw"].fillna(0)
  141. + transmission_df["LTE_SCC3_effective_bw"].fillna(0)
  142. + transmission_df["LTE_SCC4_effective_bw"].fillna(0)
  143. + transmission_df["LTE_bw"].fillna(0))
  144. transmission_df["nr_effective_bw_sum"] = transmission_df["SCC1_NR5G_effective_bw"]
  145. transmission_df["effective_bw_sum"] = transmission_df["nr_effective_bw_sum"] + transmission_df[
  146. "lte_effective_bw_sum"]
  147. # transmission timeline
  148. scaley = 1.5
  149. scalex = 1.0
  150. fig, ax = plt.subplots(2, 1, figsize=[6.4 * scaley, 4.8 * scalex])
  151. fig.subplots_adjust(right=0.75)
  152. if not args.fancy:
  153. plt.title("{} with {}".format(transmission_direction, cc_algo))
  154. fig.suptitle("{} with {}".format(transmission_direction, cc_algo))
  155. ax0 = ax[0]
  156. ax1 = ax0.twinx()
  157. ax2 = ax0.twinx()
  158. # ax2.spines.right.set_position(("axes", 1.22))
  159. ax00 = ax[1]
  160. snd_plot = ax0.plot(
  161. transmission_df["snd_cwnd"].dropna(),
  162. color="lime",
  163. linestyle="dashed",
  164. label="cwnd",
  165. )
  166. srtt_plot = ax1.plot(
  167. transmission_df["srtt"].dropna(),
  168. color="red",
  169. linestyle="dashdot",
  170. label="sRTT",
  171. )
  172. goodput_plot = ax2.plot(
  173. transmission_df["goodput_rolling"],
  174. color="blue",
  175. linestyle="solid",
  176. label="goodput",
  177. )
  178. # sum all effective bandwidth for 5G and 4G
  179. transmission_df["SCC1_NR5G_effective_bw"] = transmission_df["SCC1_NR5G_bw"].fillna(0)
  180. transmission_df["effective_bw_sum"] = (
  181. transmission_df["SCC1_NR5G_effective_bw"]
  182. + transmission_df["LTE_SCC1_effective_bw"]
  183. + transmission_df["LTE_SCC2_effective_bw"]
  184. + transmission_df["LTE_SCC3_effective_bw"]
  185. + transmission_df["LTE_SCC4_effective_bw"]
  186. + transmission_df["LTE_bw"]
  187. )
  188. bw_cols = [
  189. "SCC1_NR5G_effective_bw",
  190. "LTE_bw",
  191. "LTE_SCC1_effective_bw",
  192. "LTE_SCC2_effective_bw",
  193. "LTE_SCC3_effective_bw",
  194. "LTE_SCC4_effective_bw",
  195. ]
  196. transmission_df.to_csv("{}{}_plot.csv".format(args.save, csv.replace(".csv", "")))
  197. exit()
  198. ax_stacked = transmission_df[bw_cols].plot.area(stacked=True, linewidth=0, ax=ax00)
  199. ax00.set_ylabel("bandwidth [MHz]")
  200. #ax.set_xlabel("time [minutes]")
  201. #ax00.set_xlim([0, transmission_df.index[-1]])
  202. ax00.xaxis.grid(False)
  203. ax2.spines.right.set_position(("axes", 1.1))
  204. ax0.set_ylim(0, 5000)
  205. ax1.set_ylim(0, 0.3)
  206. ax2.set_ylim(0, 600)
  207. #ax00.set_ylim(-25, 0)
  208. ax00.set_xlabel("arrival time [s]")
  209. ax2.set_ylabel("Goodput [mbps]")
  210. #ax00.set_ylabel("LTE/NR RSRQ [dB]")
  211. # ax02.set_ylabel("LTE RSRQ [dB]")
  212. ax1.set_ylabel("sRTT [s]")
  213. ax0.set_ylabel("cwnd [MSS]")
  214. if args.fancy:
  215. legend_frame = False
  216. ax0.set_xlim([0, transmission_df.index[-1]])
  217. ax00.set_xlim([0, transmission_df.index[-1]])
  218. # added these three lines
  219. lns_ax0 = snd_plot + srtt_plot + goodput_plot
  220. labs_ax0 = [l.get_label() for l in lns_ax0]
  221. ax2.legend(lns_ax0, labs_ax0, ncols=9, fontsize=9, loc="upper right", frameon=legend_frame)
  222. #ax0.set_zorder(100)
  223. #lns_ax00 = [ax_stacked]
  224. #labs_ax00 = ["5G bandwidth", "4G bandwidth"]
  225. #ax00.legend(lns_ax00, labs_ax00, ncols=3, fontsize=9, loc="upper center", frameon=legend_frame)
  226. L = ax00.legend(ncols=3, fontsize=9, frameon=False)
  227. L.get_texts()[0].set_text("5G main")
  228. L.get_texts()[1].set_text("4G main")
  229. L.get_texts()[2].set_text("4G SCC 1")
  230. L.get_texts()[3].set_text("4G SCC 2")
  231. L.get_texts()[4].set_text("4G SCC 3")
  232. L.get_texts()[5].set_text("4G SCC 4")
  233. #ax00.set_zorder(100)
  234. plt.savefig("{}{}_plot.eps".format(args.save, csv.replace(".csv", "")), bbox_inches="tight")
  235. else:
  236. fig.legend(loc="lower right")
  237. plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", "")), bbox_inches="tight")
  238. # except Exception as e:
  239. # print("Error processing file: {}".format(csv))
  240. # print(str(e))
  241. counter += 1
  242. plt.close(fig)
  243. plt.clf()