You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

216 line
6.9KB

  1. #!/usr/bin/env python3
  2. import multiprocessing
  3. import os
  4. import pickle
  5. from argparse import ArgumentParser
  6. from math import ceil
  7. from time import sleep
  8. import matplotlib
  9. import pandas as pd
  10. import matplotlib.pyplot as plt
  11. from mpl_toolkits import axisartist
  12. from mpl_toolkits.axes_grid1 import host_subplot
  13. def csv_to_dataframe(csv_list, folder, dummy):
  14. global n
  15. global frame_list
  16. transmission_df = None
  17. for csv in csv_list:
  18. tmp_df = pd.read_csv(
  19. "{}{}".format(folder, csv),
  20. dtype=dict(is_retranmission=bool, is_dup_ack=bool),
  21. )
  22. tmp_df["datetime"] = pd.to_datetime(tmp_df["datetime"]) - pd.Timedelta(hours=1)
  23. tmp_df = tmp_df.set_index("datetime")
  24. tmp_df.index = pd.to_datetime(tmp_df.index)
  25. if transmission_df is None:
  26. transmission_df = tmp_df
  27. else:
  28. transmission_df = pd.concat([transmission_df, tmp_df])
  29. n.value += 1
  30. frame_list.append(transmission_df)
  31. from itertools import islice
  32. def chunk(it, size):
  33. it = iter(it)
  34. return iter(lambda: tuple(islice(it, size)), ())
  35. def plot_cdf(dataframe, column_name, axis=None):
  36. stats_df = dataframe \
  37. .groupby(column_name) \
  38. [column_name] \
  39. .agg("count") \
  40. .pipe(pd.DataFrame) \
  41. .rename(columns={column_name: "frequency"})
  42. # PDF
  43. stats_df["PDF"] = stats_df["frequency"] / sum(stats_df["frequency"])
  44. # CDF
  45. stats_df["CDF"] = stats_df["PDF"].cumsum()
  46. stats_df = stats_df.reset_index()
  47. if axis:
  48. stats_df.plot(x=column_name, y=["CDF"], grid=True, ax=axis)
  49. else:
  50. stats_df.plot(x=column_name, y=["CDF"], grid=True)
  51. del stats_df
  52. if __name__ == "__main__":
  53. parser = ArgumentParser()
  54. parser.add_argument("-s", "--serials", required=True, help="Serial csv files. Comma separated.")
  55. parser.add_argument("-f", "--folders", required=True, help="PCAP csv folders. Comma separated.")
  56. parser.add_argument("--save", default=None, help="Location to save pdf file.")
  57. parser.add_argument(
  58. "-c",
  59. "--cores",
  60. default=1,
  61. type=int,
  62. help="Number of cores for multiprocessing.",
  63. )
  64. parser.add_argument(
  65. "-i",
  66. "--interval",
  67. default=2,
  68. type=int,
  69. help="Time interval for rolling window.",
  70. )
  71. args = parser.parse_args()
  72. transmission_df_list = list()
  73. for f in args.folders.split(","):
  74. manager = multiprocessing.Manager()
  75. n = manager.Value("i", 0)
  76. frame_list = manager.list()
  77. jobs = []
  78. # load all pcap csv into one dataframe
  79. pcap_csv_list = list()
  80. for filename in os.listdir(f):
  81. if filename.endswith(".csv") and "tcp" in filename:
  82. pcap_csv_list.append(filename)
  83. parts = chunk(pcap_csv_list, ceil(len(pcap_csv_list) / args.cores))
  84. print("Start processing with {} jobs.".format(args.cores))
  85. for p in parts:
  86. process = multiprocessing.Process(target=csv_to_dataframe, args=(p, f, "dummy"))
  87. jobs.append(process)
  88. for j in jobs:
  89. j.start()
  90. print("Started all jobs.")
  91. # Ensure all the processes have finished
  92. finished_job_counter = 0
  93. working = ["|", "/", "-", "\\", "|", "/", "-", "\\"]
  94. w = 0
  95. while len(jobs) != finished_job_counter:
  96. sleep(1)
  97. print(
  98. "\r\t{}{}{}\t Running {} jobs ({} finished). Processed {} out of {} pcap csv files. ({}%) ".format(
  99. working[w],
  100. working[w],
  101. working[w],
  102. len(jobs),
  103. finished_job_counter,
  104. n.value,
  105. len(pcap_csv_list),
  106. round((n.value / len(pcap_csv_list)) * 100, 2),
  107. ),
  108. end="",
  109. )
  110. finished_job_counter = 0
  111. for j in jobs:
  112. if not j.is_alive():
  113. finished_job_counter += 1
  114. if (w + 1) % len(working) == 0:
  115. w = 0
  116. else:
  117. w += 1
  118. print("\r\nSorting table...")
  119. transmission_df = pd.concat(frame_list)
  120. frame_list = None
  121. transmission_df = transmission_df.sort_index()
  122. print("Calculate goodput...")
  123. transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10 ** 6)
  124. # key for columns and level for index
  125. transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum")
  126. transmission_df["goodput"] = transmission_df["goodput"].apply(
  127. lambda x: ((x * 8) / args.interval) / 10**6
  128. )
  129. transmission_df["goodput_rolling"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
  130. transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
  131. lambda x: ((x * 8) / args.interval) / 10 ** 6
  132. )
  133. # set meta values
  134. cc_algo = transmission_df["congestion_control"].iloc[0]
  135. cc_algo = cc_algo.upper()
  136. transmission_direction = transmission_df["direction"].iloc[0]
  137. # read serial csv
  138. #serial_df = pd.read_csv(args.serial_file)
  139. #serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1)
  140. #serial_df = serial_df.set_index("datetime")
  141. #serial_df.index = pd.to_datetime(serial_df.index)
  142. #serial_df.sort_index()
  143. #transmission_df = pd.merge_asof(
  144. # transmission_df,
  145. # serial_df,
  146. # tolerance=pd.Timedelta("1s"),
  147. # right_index=True,
  148. # left_index=True,
  149. #)
  150. transmission_df_list.append(dict(
  151. df=transmission_df,
  152. cc_algo=cc_algo,
  153. transmission_direction=transmission_direction
  154. ))
  155. del transmission_df
  156. # Plot sRTT CDF
  157. legend = list()
  158. plot_cdf(transmission_df_list[0]["df"], "srtt")
  159. for i in range(1, len(transmission_df_list)):
  160. plot_cdf(transmission_df_list[i]["df"], "srtt", axis=plt.gca())
  161. legend.append(transmission_df_list[i]["cc_algo"])
  162. plt.xscale("log")
  163. plt.xlabel("sRTT [s]")
  164. plt.ylabel("CDF")
  165. plt.legend(legend)
  166. plt.title("{}".format(transmission_df_list[0]["transmission_direction"]))
  167. plt.savefig("{}{}_cdf_compare_plot.pdf".format(args.save, "srtt"))
  168. plt.clf()
  169. # Plot goodput CDF
  170. legend = list()
  171. plot_cdf(transmission_df_list[0]["df"], "goodput")
  172. for i in range(1, len(transmission_df_list)):
  173. plot_cdf(transmission_df_list[i]["df"], "goodput", axis=plt.gca())
  174. legend.append(transmission_df_list[i]["cc_algo"])
  175. plt.xlabel("goodput [mbps]")
  176. plt.ylabel("CDF")
  177. plt.legend(legend)
  178. plt.title("{}".format(transmission_df_list[0]["transmission_direction"]))
  179. plt.savefig("{}{}_cdf_compare_plot.pdf".format(args.save, "goodput"))