您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

148 行
5.5KB

  1. #!/usr/bin/env python3
  2. import math
  3. import multiprocessing
  4. import os
  5. from argparse import ArgumentParser
  6. import matplotlib
  7. import pandas as pd
  8. import matplotlib.pyplot as plt
  9. if __name__ == "__main__":
  10. parser = ArgumentParser()
  11. parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
  12. parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.")
  13. parser.add_argument("--save", required=True, help="Location to save pdf file.")
  14. parser.add_argument(
  15. "-i",
  16. "--interval",
  17. default=10,
  18. type=int,
  19. help="Time interval for rolling window.",
  20. )
  21. args = parser.parse_args()
  22. pcap_csv_list = list()
  23. for filename in os.listdir(args.pcap_csv_folder):
  24. if filename.endswith(".csv") and "tcp" in filename:
  25. pcap_csv_list.append(filename)
  26. counter = 1
  27. if len(pcap_csv_list) == 0:
  28. print("No CSV files found.")
  29. pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", "")))
  30. for csv in pcap_csv_list:
  31. print("\rProcessing {} out of {} CSVs.\t({}%)\t".format(counter, len(pcap_csv_list), math.floor(counter/len(pcap_csv_list))))
  32. #try:
  33. transmission_df = pd.read_csv(
  34. "{}{}".format(args.pcap_csv_folder, csv),
  35. dtype=dict(is_retranmission=bool, is_dup_ack=bool),
  36. )
  37. transmission_df["datetime"] = pd.to_datetime(transmission_df["datetime"]) - pd.Timedelta(hours=1)
  38. transmission_df = transmission_df.set_index("datetime")
  39. transmission_df.index = pd.to_datetime(transmission_df.index)
  40. transmission_df = transmission_df.sort_index()
  41. # srtt to [s]
  42. transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6)
  43. # key for columns and level for index
  44. transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum")
  45. transmission_df["goodput"] = transmission_df["goodput"].apply(
  46. lambda x: ((x * 8) / args.interval) / 10**6
  47. )
  48. transmission_df["goodput_rolling"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
  49. transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
  50. lambda x: ((x * 8) / args.interval) / 10 ** 6
  51. )
  52. # set meta values and remove all not needed columns
  53. cc_algo = transmission_df["congestion_control"].iloc[0]
  54. cc_algo = cc_algo.upper()
  55. transmission_direction = transmission_df["direction"].iloc[0]
  56. #transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"])
  57. # read serial csv
  58. serial_df = pd.read_csv(args.serial_file)
  59. serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1)
  60. serial_df = serial_df.set_index("datetime")
  61. serial_df.index = pd.to_datetime(serial_df.index)
  62. serial_df.sort_index()
  63. transmission_df = pd.merge_asof(
  64. transmission_df,
  65. serial_df,
  66. tolerance=pd.Timedelta("1s"),
  67. right_index=True,
  68. left_index=True,
  69. )
  70. transmission_df = transmission_df.rename(columns={"PCID": "lte_pcid", "PCID.1": "nr_pcid"})
  71. # transmission timeline
  72. scaley = 1.5
  73. scalex = 1.0
  74. plt.title("{} with {}".format(transmission_direction, cc_algo))
  75. fig, ax = plt.subplots(2, 1, figsize=[6.4 * scaley, 4.8 * scalex])
  76. fig.subplots_adjust(right=0.75)
  77. ax0 = ax[0]
  78. ax1 = ax0.twinx()
  79. ax2 = ax0.twinx()
  80. ax2.spines.right.set_position(("axes", 3))
  81. ax00 = ax[1]
  82. ax01 = ax00.twinx()
  83. transmission_df["lte_handovers"] = transmission_df["lte_pcid"].diff()
  84. lte_handovers = transmission_df[transmission_df.lte_pcid.diff() != 0].index.values
  85. nr_handovers = transmission_df[transmission_df.nr_pcid.diff() != 0].index.values
  86. print(transmission_df["lte_handovers"])
  87. print(len(transmission_df["lte_handovers"]))
  88. continue
  89. # Plot vertical lines
  90. for item in lte_handovers[1::]:
  91. ax00.axvline(item, ymin=0, ymax=1, color='red')
  92. for item in nr_handovers[1::]:
  93. ax00.axvline(item, ymin=0, ymax=1, color='red')
  94. ax0.plot(transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd")
  95. ax1.plot(transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT")
  96. ax2.plot(transmission_df["goodput_rolling"], color="blue", linestyle="solid", label="goodput")
  97. ax00.plot(transmission_df["downlink_cqi"].dropna(), color="magenta", linestyle="dotted", label="CQI")
  98. ax01.plot(transmission_df["DL_bandwidth"].dropna(), color="peru", linestyle="dotted", label="DL_bandwidth")
  99. ax2.spines.right.set_position(("axes", 1.1))
  100. ax0.set_ylim(0, 5000)
  101. ax1.set_ylim(0, 0.3)
  102. ax2.set_ylim(0, 500)
  103. ax00.set_ylim(0, 16)
  104. ax01.set_ylim(0, 21)
  105. ax00.set_xlabel("arrival time")
  106. ax2.set_ylabel("Goodput [mbps]")
  107. ax00.set_ylabel("CQI")
  108. ax1.set_ylabel("sRTT [s]")
  109. ax0.set_ylabel("cwnd")
  110. ax01.set_ylabel("Bandwidth [MHz]")
  111. plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", "")))
  112. #except Exception as e:
  113. # print("Error processing file: {}".format(csv))
  114. # print(str(e))
  115. counter += 1
  116. plt.clf()