Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

312 lines
10KB

  1. #!/usr/bin/env python3
  2. import math
  3. import multiprocessing
  4. import os
  5. from argparse import ArgumentParser
  6. import matplotlib
  7. import numpy as np
  8. import pandas as pd
  9. import matplotlib.pyplot as plt
  10. # Using seaborn's style
  11. # plt.style.use('seaborn')
  12. tex_fonts = {
  13. "pgf.texsystem": "lualatex",
  14. # "legend.fontsize": "x-large",
  15. # "figure.figsize": (15, 5),
  16. "axes.labelsize": 15, # "small",
  17. # "axes.titlesize": "x-large",
  18. "xtick.labelsize": 15, # "small",
  19. "ytick.labelsize": 15, # "small",
  20. "legend.fontsize": 15,
  21. "axes.formatter.use_mathtext": True,
  22. "mathtext.fontset": "dejavusans",
  23. }
  24. # plt.rcParams.update(tex_fonts)
  25. def convert_cellid(value):
  26. if isinstance(value, str):
  27. try:
  28. r = int(value.split(" ")[-1].replace("(", "").replace(")", ""))
  29. return r
  30. except Exception as e:
  31. return -1
  32. else:
  33. return int(-1)
  34. if __name__ == "__main__":
  35. parser = ArgumentParser()
  36. parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
  37. parser.add_argument(
  38. "-p", "--pcap_csv_folder", required=True, help="PCAP csv folder."
  39. )
  40. parser.add_argument("--save", required=True, help="Location to save pdf file.")
  41. parser.add_argument(
  42. "-i",
  43. "--interval",
  44. default=10,
  45. type=int,
  46. help="Time interval for rolling window.",
  47. )
  48. args = parser.parse_args()
  49. pcap_csv_list = list()
  50. for filename in os.listdir(args.pcap_csv_folder):
  51. if filename.endswith(".csv") and "tcp" in filename:
  52. pcap_csv_list.append(filename)
  53. counter = 1
  54. if len(pcap_csv_list) == 0:
  55. print("No CSV files found.")
  56. pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", "")))
  57. for csv in pcap_csv_list:
  58. print(
  59. "\rProcessing {} out of {} CSVs.\t({}%)\t".format(
  60. counter, len(pcap_csv_list), math.floor(counter / len(pcap_csv_list))
  61. )
  62. )
  63. # try:
  64. transmission_df = pd.read_csv(
  65. "{}{}".format(args.pcap_csv_folder, csv),
  66. dtype=dict(is_retranmission=bool, is_dup_ack=bool),
  67. )
  68. transmission_df["datetime"] = pd.to_datetime(
  69. transmission_df["datetime"]
  70. ) - pd.Timedelta(hours=1)
  71. transmission_df = transmission_df.set_index("datetime")
  72. transmission_df.index = pd.to_datetime(transmission_df.index)
  73. transmission_df = transmission_df.sort_index()
  74. # srtt to [s]
  75. transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6)
  76. # key for columns and level for index
  77. transmission_df["goodput"] = (
  78. transmission_df["payload_size"]
  79. .groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval)))
  80. .transform("sum")
  81. )
  82. transmission_df["goodput"] = transmission_df["goodput"].apply(
  83. lambda x: ((x * 8) / args.interval) / 10**6
  84. )
  85. transmission_df["goodput_rolling"] = (
  86. transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
  87. )
  88. transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
  89. lambda x: ((x * 8) / args.interval) / 10**6
  90. )
  91. # set meta values and remove all not needed columns
  92. cc_algo = transmission_df["congestion_control"].iloc[0]
  93. cc_algo = cc_algo.upper()
  94. transmission_direction = transmission_df["direction"].iloc[0]
  95. # transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"])
  96. # read serial csv
  97. serial_df = pd.read_csv(
  98. args.serial_file, converters={"Cell_ID": convert_cellid}
  99. )
  100. serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(
  101. hours=1
  102. )
  103. serial_df = serial_df.set_index("datetime")
  104. serial_df.index = pd.to_datetime(serial_df.index)
  105. serial_df.sort_index()
  106. # print(serial_df["Cell_ID"])
  107. # serial_df["Cell_ID"] = serial_df["Cell_ID"].apply(
  108. # lambda x: int(x.split(" ")[-1].replace("(", "").replace(")", "")))
  109. transmission_df = pd.merge_asof(
  110. transmission_df,
  111. serial_df,
  112. tolerance=pd.Timedelta("1s"),
  113. right_index=True,
  114. left_index=True,
  115. )
  116. transmission_df.index = transmission_df["arrival_time"]
  117. # replace 0 in RSRQ with Nan
  118. transmission_df["NR5G_RSRQ_(dB)"] = transmission_df["NR5G_RSRQ_(dB)"].replace(
  119. 0, np.NaN
  120. )
  121. transmission_df["RSRQ_(dB)"] = transmission_df["RSRQ_(dB)"].replace(0, np.NaN)
  122. # stacked plot for bandwidth
  123. # transmission_df["lte_bw_sum"] = transmission_df["bw_sum"] - transmission_df["NR5G_dl_bw"]
  124. # transmission_df["nr_bw_sum"] = transmission_df["NR5G_dl_bw"]
  125. for i in range(1, 5):
  126. transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
  127. "LTE_SCC{}_bw".format(i)
  128. ]
  129. mask = transmission_df["LTE_SCC{}_state".format(i)].isin(["ACTIVE"])
  130. transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
  131. "LTE_SCC{}_effective_bw".format(i)
  132. ].where(mask, other=0)
  133. # df = df.filter(["LTE_SCC1_state", "LTE_SCC1_bw", "LTE_SCC1_effective_bw"])
  134. transmission_df["SCC1_NR5G_effective_bw"] = transmission_df[
  135. "SCC1_NR5G_bw"
  136. ].fillna(0)
  137. transmission_df["effective_bw_sum"] = (
  138. transmission_df["SCC1_NR5G_effective_bw"]
  139. + transmission_df["LTE_SCC1_effective_bw"]
  140. + transmission_df["LTE_SCC2_effective_bw"]
  141. + transmission_df["LTE_SCC3_effective_bw"]
  142. + transmission_df["LTE_SCC4_effective_bw"]
  143. + transmission_df["LTE_bw"]
  144. )
  145. transmission_df["lte_effective_bw_sum"] = transmission_df["effective_bw_sum"] - transmission_df["SCC1_NR5G_effective_bw"]
  146. transmission_df["nr_effective_bw_sum"] = transmission_df["SCC1_NR5G_effective_bw"]
  147. # transmission timeline
  148. scaley = 1.5
  149. scalex = 1.0
  150. plt.title("{} with {}".format(transmission_direction, cc_algo))
  151. fig, ax = plt.subplots(2, 1, figsize=[6.4 * scaley, 4.8 * scalex])
  152. fig.subplots_adjust(right=0.75)
  153. fig.suptitle("{} with {}".format(transmission_direction, cc_algo))
  154. ax0 = ax[0]
  155. ax1 = ax0.twinx()
  156. ax2 = ax0.twinx()
  157. # ax2.spines.right.set_position(("axes", 1.22))
  158. ax00 = ax[1]
  159. ax01 = ax00.twinx()
  160. ax02 = ax00.twinx()
  161. # Plot vertical lines
  162. first = True
  163. lte_handovers = transmission_df["Cell_ID"].dropna().diff()
  164. for index, value in lte_handovers.items():
  165. if value > 0:
  166. if first:
  167. ax00.axvline(
  168. index, ymin=0, ymax=1, color="skyblue", label="4G Handover"
  169. )
  170. first = False
  171. else:
  172. ax00.axvline(index, ymin=0, ymax=1, color="skyblue")
  173. first = True
  174. nr_handovers = (
  175. transmission_df["NR5G_Cell_ID"].replace(0, np.NaN).dropna().diff()
  176. )
  177. for index, value in nr_handovers.items():
  178. if value > 0:
  179. if first:
  180. ax00.axvline(
  181. index, ymin=0, ymax=1, color="greenyellow", label="5G Handover"
  182. )
  183. first = False
  184. else:
  185. ax00.axvline(index, ymin=0, ymax=1, color="greenyellow")
  186. ax0.plot(
  187. transmission_df["snd_cwnd"].dropna(),
  188. color="lime",
  189. linestyle="dashed",
  190. label="cwnd",
  191. )
  192. ax1.plot(
  193. transmission_df["srtt"].dropna(),
  194. color="red",
  195. linestyle="dashdot",
  196. label="sRTT",
  197. )
  198. ax2.plot(
  199. transmission_df["goodput_rolling"],
  200. color="blue",
  201. linestyle="solid",
  202. label="goodput",
  203. )
  204. # ax2.plot(transmission_df["goodput"], color="blue", linestyle="solid", label="goodput")
  205. ax01.plot(
  206. transmission_df["effective_bw_sum"].dropna(),
  207. color="peru",
  208. linestyle="solid",
  209. label="bandwidth",
  210. )
  211. ax01.plot(
  212. transmission_df["lte_effective_bw_sum"].dropna(),
  213. color="lightsteelblue",
  214. linestyle="solid",
  215. label="4G bandwidth",
  216. alpha=0.5,
  217. )
  218. ax01.plot(
  219. transmission_df["nr_effective_bw_sum"].dropna(),
  220. color="cornflowerblue",
  221. linestyle="solid",
  222. label="5G bandwidth",
  223. alpha=0.5,
  224. )
  225. # ax01.stackplot(transmission_df["arrival_time"].to_list(),
  226. # [transmission_df["lte_bw_sum"].to_list(), transmission_df["nr_bw_sum"].to_list()],
  227. # colors=["lightsteelblue", "cornflowerblue"],
  228. # labels=["4G bandwidth", "5G bandwidth"]
  229. # )
  230. ax02.plot(
  231. transmission_df["RSRQ_(dB)"].dropna(),
  232. color="purple",
  233. linestyle="dotted",
  234. label="LTE RSRQ",
  235. )
  236. ax00.plot(
  237. transmission_df["NR5G_RSRQ_(dB)"].dropna(),
  238. color="magenta",
  239. linestyle="dotted",
  240. label="NR RSRQ",
  241. )
  242. ax2.spines.right.set_position(("axes", 1.1))
  243. ax02.spines.right.set_position(("axes", 1.1))
  244. ax0.set_ylim(0, 5000)
  245. ax1.set_ylim(0, 0.3)
  246. ax2.set_ylim(0, 500)
  247. ax00.set_ylim(-25, 0)
  248. ax01.set_ylim(0, 250)
  249. # second dB axis
  250. ax02.set_ylim(-25, 0)
  251. ax02.set_axis_off()
  252. ax00.set_xlabel("arrival time [s]")
  253. ax2.set_ylabel("Goodput [mbps]")
  254. ax00.set_ylabel("LTE/NR RSRQ [dB]")
  255. # ax02.set_ylabel("LTE RSRQ [dB]")
  256. ax1.set_ylabel("sRTT [s]")
  257. ax0.set_ylabel("cwnd")
  258. ax01.set_ylabel("Bandwidth [MHz]")
  259. fig.legend(loc="lower right")
  260. plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", "")))
  261. # except Exception as e:
  262. # print("Error processing file: {}".format(csv))
  263. # print(str(e))
  264. counter += 1
  265. plt.close(fig)
  266. plt.clf()