Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

167 lines
6.4KB

  1. #!/usr/bin/env python3
  2. import math
  3. import multiprocessing
  4. import os
  5. import pickle
  6. from argparse import ArgumentParser
  7. import matplotlib
  8. import pandas as pd
  9. import matplotlib.pyplot as plt
  10. if __name__ == "__main__":
  11. parser = ArgumentParser()
  12. parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
  13. parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.")
  14. parser.add_argument("--save", default=None, help="Location to save pdf file.")
  15. parser.add_argument(
  16. "-i",
  17. "--interval",
  18. default=10,
  19. type=int,
  20. help="Time interval for rolling window.",
  21. )
  22. args = parser.parse_args()
  23. manager = multiprocessing.Manager()
  24. n = manager.Value("i", 0)
  25. frame_list = manager.list()
  26. jobs = []
  27. # load all pcap csv into one dataframe
  28. pcap_csv_list = list()
  29. for filename in os.listdir(args.pcap_csv_folder):
  30. if filename.endswith(".csv") and "tcp" in filename:
  31. pcap_csv_list.append(filename)
  32. counter = 1
  33. if len(pcap_csv_list) == 0:
  34. print("No CSV files found.")
  35. pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", "")))
  36. for csv in pcap_csv_list:
  37. print("\rProcessing {} out of {} CSVs.\t({}%)\t".format(counter, len(pcap_csv_list), math.floor(counter/len(pcap_csv_list))))
  38. transmission_df = pd.read_csv(
  39. "{}{}".format(args.pcap_csv_folder, csv),
  40. dtype=dict(is_retranmission=bool, is_dup_ack=bool),
  41. )
  42. transmission_df["datetime"] = pd.to_datetime(transmission_df["datetime"]) - pd.Timedelta(hours=1)
  43. transmission_df = transmission_df.set_index("datetime")
  44. transmission_df.index = pd.to_datetime(transmission_df.index)
  45. transmission_df = transmission_df.sort_index()
  46. # srtt to [s]
  47. transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6)
  48. # key for columns and level for index
  49. transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum")
  50. transmission_df["goodput"] = transmission_df["goodput"].apply(
  51. lambda x: ((x * 8) / args.interval) / 10**6
  52. )
  53. transmission_df["goodput_rolling"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
  54. transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
  55. lambda x: ((x * 8) / args.interval) / 10 ** 6
  56. )
  57. # set meta values and remove all not needed columns
  58. cc_algo = transmission_df["congestion_control"].iloc[0]
  59. cc_algo = cc_algo.upper()
  60. transmission_direction = transmission_df["direction"].iloc[0]
  61. #transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"])
  62. # read serial csv
  63. serial_df = pd.read_csv(args.serial_file)
  64. serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1)
  65. serial_df = serial_df.set_index("datetime")
  66. serial_df.index = pd.to_datetime(serial_df.index)
  67. serial_df.sort_index()
  68. transmission_df = pd.merge_asof(
  69. transmission_df,
  70. serial_df,
  71. tolerance=pd.Timedelta("1s"),
  72. right_index=True,
  73. left_index=True,
  74. )
  75. # transmission timeline
  76. scaley = 1.5
  77. scalex = 1.0
  78. fig, ax = plt.subplots(figsize=[6.4 * scaley, 4.8 * scalex])
  79. plt.title("{} with {}".format(transmission_direction, cc_algo))
  80. fig.subplots_adjust(right=0.75)
  81. twin1 = ax.twinx()
  82. twin2 = ax.twinx()
  83. twin3 = ax.twinx()
  84. # Offset the right spine of twin2. The ticks and label have already been
  85. # placed on the right by twinx above.
  86. twin2.spines.right.set_position(("axes", 1.1))
  87. twin3.spines.right.set_position(("axes", 1.2))
  88. # create list fo color indices
  89. transmission_df["index"] = transmission_df.index
  90. color_dict = dict()
  91. color_list = list()
  92. i = 0
  93. for cell_id in transmission_df["cellID"]:
  94. if cell_id not in color_dict:
  95. color_dict[cell_id] = i
  96. i += 1
  97. color_list.append(color_dict[cell_id])
  98. transmission_df["cell_color"] = color_list
  99. color_dict = None
  100. color_list = None
  101. cmap = matplotlib.cm.get_cmap("Set3")
  102. unique_cells = transmission_df["cell_color"].unique()
  103. color_list = cmap.colors * (round(len(unique_cells) / len(cmap.colors)) + 1)
  104. for c in transmission_df["cell_color"].unique():
  105. bounds = transmission_df[["index", "cell_color"]].groupby("cell_color").agg(["min", "max"]).loc[c]
  106. ax.axvspan(bounds.min(), bounds.max(), alpha=0.3, color=color_list[c])
  107. p4, = twin3.plot(transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd")
  108. p3, = twin2.plot(transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT")
  109. p1, = ax.plot(transmission_df["arrival_time"], transmission_df["goodput_rolling"], color="blue", linestyle="solid", label="goodput")
  110. p2, = twin1.plot(transmission_df["downlink_cqi"].dropna(), color="magenta", linestyle="dotted", label="CQI")
  111. ax.set_xlim(transmission_df["index"].min(), transmission_df["index"].max())
  112. ax.set_ylim(0, 500)
  113. twin1.set_ylim(0, 15)
  114. twin2.set_ylim(0, transmission_df["ack_rtt"].max())
  115. twin3.set_ylim(0, transmission_df["snd_cwnd"].max() + 10)
  116. ax.set_xlabel("arrival time")
  117. ax.set_ylabel("Goodput [mbps]")
  118. twin1.set_ylabel("CQI")
  119. twin2.set_ylabel("sRTT [s]")
  120. twin3.set_ylabel("cwnd")
  121. ax.yaxis.label.set_color(p1.get_color())
  122. twin1.yaxis.label.set_color(p2.get_color())
  123. twin2.yaxis.label.set_color(p3.get_color())
  124. twin3.yaxis.label.set_color(p4.get_color())
  125. tkw = dict(size=4, width=1.5)
  126. ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
  127. twin1.tick_params(axis='y', colors=p2.get_color(), **tkw)
  128. twin2.tick_params(axis='y', colors=p3.get_color(), **tkw)
  129. twin3.tick_params(axis='y', colors=p4.get_color(), **tkw)
  130. ax.tick_params(axis='x', **tkw)
  131. #ax.legend(handles=[p1, p2, p3])
  132. if args.save:
  133. plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", "")))
  134. counter += 1
  135. plt.clf()