You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

179 line
7.3KB

  1. #!/usr/bin/env python3
  2. import math
  3. import multiprocessing
  4. import os
  5. from argparse import ArgumentParser
  6. import matplotlib
  7. import pandas as pd
  8. import matplotlib.pyplot as plt
  9. if __name__ == "__main__":
  10. parser = ArgumentParser()
  11. parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
  12. parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.")
  13. parser.add_argument("--save", default=None, help="Location to save pdf file.")
  14. parser.add_argument(
  15. "-i",
  16. "--interval",
  17. default=10,
  18. type=int,
  19. help="Time interval for rolling window.",
  20. )
  21. args = parser.parse_args()
  22. manager = multiprocessing.Manager()
  23. n = manager.Value("i", 0)
  24. frame_list = manager.list()
  25. jobs = []
  26. # load all pcap csv into one dataframe
  27. pcap_csv_list = list()
  28. for filename in os.listdir(args.pcap_csv_folder):
  29. if filename.endswith(".csv") and "tcp" in filename:
  30. pcap_csv_list.append(filename)
  31. counter = 1
  32. if len(pcap_csv_list) == 0:
  33. print("No CSV files found.")
  34. pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", "")))
  35. for csv in pcap_csv_list:
  36. print("\rProcessing {} out of {} CSVs.\t({}%)\t".format(counter, len(pcap_csv_list), math.floor(counter/len(pcap_csv_list))))
  37. try:
  38. transmission_df = pd.read_csv(
  39. "{}{}".format(args.pcap_csv_folder, csv),
  40. dtype=dict(is_retranmission=bool, is_dup_ack=bool),
  41. )
  42. transmission_df["datetime"] = pd.to_datetime(transmission_df["datetime"]) - pd.Timedelta(hours=1)
  43. transmission_df = transmission_df.set_index("datetime")
  44. transmission_df.index = pd.to_datetime(transmission_df.index)
  45. transmission_df = transmission_df.sort_index()
  46. # srtt to [s]
  47. transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6)
  48. # key for columns and level for index
  49. transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum")
  50. transmission_df["goodput"] = transmission_df["goodput"].apply(
  51. lambda x: ((x * 8) / args.interval) / 10**6
  52. )
  53. transmission_df["goodput_rolling"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
  54. transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
  55. lambda x: ((x * 8) / args.interval) / 10 ** 6
  56. )
  57. # set meta values and remove all not needed columns
  58. cc_algo = transmission_df["congestion_control"].iloc[0]
  59. cc_algo = cc_algo.upper()
  60. transmission_direction = transmission_df["direction"].iloc[0]
  61. #transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"])
  62. # read serial csv
  63. serial_df = pd.read_csv(args.serial_file)
  64. serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1)
  65. serial_df = serial_df.set_index("datetime")
  66. serial_df.index = pd.to_datetime(serial_df.index)
  67. serial_df.sort_index()
  68. transmission_df = pd.merge_asof(
  69. transmission_df,
  70. serial_df,
  71. tolerance=pd.Timedelta("1s"),
  72. right_index=True,
  73. left_index=True,
  74. )
  75. # transmission timeline
  76. scaley = 1.5
  77. scalex = 1.0
  78. fig, ax = plt.subplots(figsize=[6.4 * scaley, 4.8 * scalex])
  79. plt.title("{} with {}".format(transmission_direction, cc_algo))
  80. fig.subplots_adjust(right=0.75)
  81. twin1 = ax.twinx()
  82. twin2 = ax.twinx()
  83. twin3 = ax.twinx()
  84. twin4 = ax.twinx()
  85. # Offset the right spine of twin2. The ticks and label have already been
  86. # placed on the right by twinx above.
  87. twin2.spines.right.set_position(("axes", 1.1))
  88. twin3.spines.right.set_position(("axes", 1.2))
  89. twin4.spines.right.set_position(("axes", 1.3))
  90. # create list fo color indices
  91. transmission_df["index"] = transmission_df.index
  92. color_dict = dict()
  93. color_list = list()
  94. i = 0
  95. for cell_id in transmission_df["cellID"]:
  96. if cell_id not in color_dict:
  97. color_dict[cell_id] = i
  98. i += 1
  99. color_list.append(color_dict[cell_id])
  100. transmission_df["cell_color"] = color_list
  101. color_dict = None
  102. color_list = None
  103. cmap = matplotlib.cm.get_cmap("Set3")
  104. unique_cells = transmission_df["cell_color"].unique()
  105. color_list = cmap.colors * (round(len(unique_cells) / len(cmap.colors)) + 1)
  106. for c in transmission_df["cell_color"].unique():
  107. bounds = transmission_df[["index", "cell_color"]].groupby("cell_color").agg(["min", "max"]).loc[c]
  108. ax.axvspan(bounds.min(), bounds.max(), alpha=0.3, color=color_list[c])
  109. p4, = twin3.plot(transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd")
  110. p3, = twin2.plot(transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT")
  111. p1, = ax.plot(transmission_df["goodput_rolling"], color="blue", linestyle="solid", label="goodput")
  112. p2, = twin1.plot(transmission_df["downlink_cqi"].dropna(), color="magenta", linestyle="dotted", label="CQI")
  113. p5, = twin4.plot(transmission_df["DL_bandwidth"].dropna(), color="peru", linestyle="dotted", label="DL_bandwidth")
  114. ax.set_xlim(transmission_df["index"].min(), transmission_df["index"].max())
  115. ax.set_ylim(0, 500)
  116. twin1.set_ylim(0, 15)
  117. twin2.set_ylim(0, 0.2) #twin2.set_ylim(0, transmission_df["ack_rtt"].max())
  118. twin3.set_ylim(0, transmission_df["snd_cwnd"].max() + 10)
  119. twin4.set_ylim(0, 21)
  120. ax.set_xlabel("arrival time")
  121. ax.set_ylabel("Goodput [mbps]")
  122. twin1.set_ylabel("CQI")
  123. twin2.set_ylabel("sRTT [s]")
  124. twin3.set_ylabel("cwnd")
  125. twin4.set_ylabel("DL_bandwidth")
  126. ax.yaxis.label.set_color(p1.get_color())
  127. twin1.yaxis.label.set_color(p2.get_color())
  128. twin2.yaxis.label.set_color(p3.get_color())
  129. twin3.yaxis.label.set_color(p4.get_color())
  130. twin4.yaxis.label.set_color(p5.get_color())
  131. tkw = dict(size=4, width=1.5)
  132. ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
  133. twin1.tick_params(axis='y', colors=p2.get_color(), **tkw)
  134. twin2.tick_params(axis='y', colors=p3.get_color(), **tkw)
  135. twin3.tick_params(axis='y', colors=p4.get_color(), **tkw)
  136. twin4.tick_params(axis='y', colors=p5.get_color(), **tkw)
  137. ax.tick_params(axis='x', **tkw)
  138. #ax.legend(handles=[p1, p2, p3])
  139. if args.save:
  140. plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", "")))
  141. except Exception as e:
  142. print("Error processing file: {}".format(csv))
  143. print(str(e))
  144. counter += 1
  145. plt.clf()