// SPDX-License-Identifier: GPL-2.0-only /* * TCP ROCCET: An RTT-Oriented CUBIC Congestion Control * Extension for 5G and Beyond Networks * * TCP ROCCET is a new TCP congestion control * algorithm suited for current cellular 5G NR beyond networks. * It extends the kernel default congestion control CUBIC * and improves its performance, and additionally solves an * unwanted side effects of CUBIC’s implementation. * ROCCET uses its own Slow Start, called LAUNCH, where loss * is not considered as a congestion event. * The congestion avoidance phase, called ORBITER, uses * CUBIC's window growth function and adds, based on RTT * and ACK rate, congestion events. * * NOTE: A paper for TCP ROCCET is currently under review. * A draft of this paper can be found here: * * * Further information about CUBIC: * TCP CUBIC: Binary Increase Congestion control for TCP v2.3 * Home page: * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC * This is from the implementation of CUBIC TCP in * Sangtae Ha, Injong Rhee and Lisong Xu, * "CUBIC: A New TCP-Friendly High-Speed TCP Variant" * in ACM SIGOPS Operating System Review, July 2008. * Available from: * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf * * CUBIC integrates a new slow start algorithm, called HyStart. * The details of HyStart are presented in * Sangtae Ha and Injong Rhee, * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008. * Available from: * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf * * All testing results are available from: * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing * * Unless CUBIC is enabled and congestion window is large * this behaves the same as the original Reno. */ #include "tcp_roccet.h" #include "linux/printk.h" #include #include #include #include #include #include /* Scale factor beta calculation (max_cwnd = snd_cwnd * beta) */ #define BICTCP_BETA_SCALE 1024 #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */ /* Alpha value for the sRrTT multiplied by 100. * Here 20 represents a value of 0.2 */ #define ROCCET_ALPHA_TIMES_100 20 /* The amount of seconds ROCCET stores a minRTT. * Enable "calculate_min_rtt" first. */ #define ROCCET_RTT_LOOKBACK_S 10 /* Parameters that are specific to the ROCCET-Algorithm */ static int sr_rtt_upper_bound __read_mostly = 100; static int ack_rate_diff_ss __read_mostly = 10; static int ack_rate_diff_ca __read_mostly = 200; static int calculate_min_rtt __read_mostly = 0; static int ignore_loss __read_mostly = 0; static int roccet_minRTT_interpolation_factor __read_mostly = 70; module_param(sr_rtt_upper_bound, int, 0644); MODULE_PARM_DESC(sr_rtt_upper_bound, "ROCCET's upper bound for srRTT."); module_param(ack_rate_diff_ss, int, 0644); MODULE_PARM_DESC(ack_rate_diff_ss, "ROCCET's threshold to exit slow start if ACK-rate defer by " "given amount of segments."); module_param(ack_rate_diff_ca, int, 0644); MODULE_PARM_DESC(ack_rate_diff_ca, "ROCCET's threshold for ack-rate and cum_cwnd, in percantage " "of the current cwnd."); module_param(calculate_min_rtt, int, 0644); MODULE_PARM_DESC(calculate_min_rtt, "Calculate min RTT if no lower RTT occurs after 10 sec."); module_param(ignore_loss, int, 0644); MODULE_PARM_DESC(ignore_loss, "Ignore loss as a congestion event."); module_param(roccet_minRTT_interpolation_factor, int, 0644); MODULE_PARM_DESC( roccet_minRTT_interpolation_factor, "ROCCET factor for interpolating the current RTT with the last minRTT " "(minRTT = (factor * currRTT + (100-factor) * minRTT) / 100)"); static int fast_convergence __read_mostly = 1; static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */ static int initial_ssthresh __read_mostly; static int bic_scale __read_mostly = 41; static int tcp_friendliness __read_mostly = 1; static u32 cube_rtt_scale __read_mostly; static u32 beta_scale __read_mostly; static u64 cube_factor __read_mostly; /* Note parameters that are used for precomputing scale factors are read-only */ module_param(fast_convergence, int, 0644); MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence"); module_param(beta, int, 0644); MODULE_PARM_DESC(beta, "beta for multiplicative increase"); module_param(initial_ssthresh, int, 0644); MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold"); module_param(bic_scale, int, 0444); MODULE_PARM_DESC( bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)"); module_param(tcp_friendliness, int, 0644); MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness"); static inline void roccettcp_reset(struct roccettcp *ca) { memset(ca, 0, offsetof(struct roccettcp, curr_rtt)); ca->bw_limit.sum_cwnd = 1; ca->bw_limit.sum_acked = 1; ca->bw_limit.next_check = 0; ca->curr_min_rtt_timed.rtt = ~0U; ca->curr_min_rtt_timed.time = ~0U; ca->last_rtt = 0; } static inline void update_min_rtt(struct sock *sk) { struct roccettcp *ca = inet_csk_ca(sk); u32 now = jiffies_to_usecs(tcp_jiffies32); if (now - ca->curr_min_rtt_timed.time > ROCCET_RTT_LOOKBACK_S * USEC_PER_SEC && calculate_min_rtt) { u32 new_min_rtt = max(ca->curr_rtt, 1); u32 old_min_rtt = ca->curr_min_rtt_timed.rtt; u32 interpolated_min_rtt = (new_min_rtt * roccet_minRTT_interpolation_factor + old_min_rtt * (100 - roccet_minRTT_interpolation_factor)) / 100; ca->curr_min_rtt_timed.rtt = interpolated_min_rtt; ca->curr_min_rtt_timed.time = now; } /* Check if new lower min RTT was found. If so, set it directly */ if (ca->curr_rtt < ca->curr_min_rtt_timed.rtt) { ca->curr_min_rtt_timed.rtt = max(ca->curr_rtt, 1); ca->curr_min_rtt_timed.time = now; } } /* Return difference between last and current ack rate. */ static inline int get_ack_rate_diff(struct roccettcp *ca) { return ca->ack_rate.last_rate - ca->ack_rate.curr_rate; } /* Update ack rate sampled by 100ms. */ static inline void update_ack_rate(struct sock *sk) { struct roccettcp *ca = inet_csk_ca(sk); u32 now = jiffies_to_usecs(tcp_jiffies32); u32 interval = USEC_PER_MSEC * 100; if ((u32)(now - ca->ack_rate.last_rate_time) >= interval) { ca->ack_rate.last_rate_time = now; ca->ack_rate.last_rate = ca->ack_rate.curr_rate; ca->ack_rate.curr_rate = ca->ack_rate.cnt; ca->ack_rate.cnt = 0; } else { ca->ack_rate.cnt += 1; } } /* Compute srRTT. */ static inline void update_srrtt(struct sock *sk) { struct roccettcp *ca = inet_csk_ca(sk); if (ca->curr_min_rtt_timed.rtt == 0) return; /* Calculate the new rRTT (Scaled by 100). * 100 * ((sRTT - sRTT_min) / sRTT_min) */ u32 rRTT = (100 * (ca->curr_rtt - ca->curr_min_rtt_timed.rtt)) / ca->curr_min_rtt_timed.rtt; // (1 - alpha) * srRTT + alpha * rRTT ca->curr_srRTT = ((100 - ROCCET_ALPHA_TIMES_100) * ca->curr_srRTT + ROCCET_ALPHA_TIMES_100 * rRTT) / 100; } __bpf_kfunc static void roccettcp_init(struct sock *sk) { struct roccettcp *ca = inet_csk_ca(sk); roccettcp_reset(ca); if (initial_ssthresh) tcp_sk(sk)->snd_ssthresh = initial_ssthresh; /* Initial roccet paramters */ ca->roccet_last_event_time_us = 0; ca->curr_min_rtt = ~0U; ca->ack_rate.last_rate = 0; ca->ack_rate.last_rate_time = 0; ca->ack_rate.curr_rate = 0; ca->ack_rate.cnt = 0; } __bpf_kfunc static void roccettcp_cwnd_event(struct sock *sk, enum tcp_ca_event event) { if (event == CA_EVENT_TX_START) { struct roccettcp *ca = inet_csk_ca(sk); u32 now = tcp_jiffies32; s32 delta; delta = now - tcp_sk(sk)->lsndtime; /* We were application limited (idle) for a while. * Shift epoch_start to keep cwnd growth to cubic curve. */ if (ca->epoch_start && delta > 0) { ca->epoch_start += delta; if (after(ca->epoch_start, now)) ca->epoch_start = now; } return; } } /* calculate the cubic root of x using a table lookup followed by one * Newton-Raphson iteration. * Avg err ~= 0.195% */ static u32 cubic_root(u64 a) { u32 x, b, shift; /* cbrt(x) MSB values for x MSB values in [0..63]. * Precomputed then refined by hand - Willy Tarreau * * For x in [0..63], * v = cbrt(x << 18) - 1 * cbrt(x) = (v[x] + 10) >> 6 */ static const u8 v[] = { /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118, /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156, /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179, /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199, /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215, /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229, /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242, /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254, }; b = fls64(a); if (b < 7) { /* a in [0..63] */ return ((u32)v[(u32)a] + 35) >> 6; } b = ((b * 84) >> 8) - 1; shift = (a >> (b * 3)); x = ((u32)(((u32)v[shift] + 10) << b)) >> 6; /* Newton-Raphson iteration * 2 * x = ( 2 * x + a / x ) / 3 * k+1 k k */ x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1))); x = ((x * 341) >> 10); return x; } /* Compute congestion window to use. */ static inline void bictcp_update(struct roccettcp *ca, u32 cwnd, u32 acked) { u32 delta, bic_target, max_cnt; u64 offs, t; ca->ack_cnt += acked; /* count the number of ACKed packets */ if (ca->last_cwnd == cwnd && (s32)(tcp_jiffies32 - ca->last_time) <= HZ / 32) return; /* The CUBIC function can update ca->cnt at most once per jiffy. * On all cwnd reduction events, ca->epoch_start is set to 0, * which will force a recalculation of ca->cnt. */ if (ca->epoch_start && tcp_jiffies32 == ca->last_time) goto tcp_friendliness; ca->last_cwnd = cwnd; ca->last_time = tcp_jiffies32; if (ca->epoch_start == 0) { ca->epoch_start = tcp_jiffies32; /* record beginning */ ca->ack_cnt = acked; /* start counting */ ca->tcp_cwnd = cwnd; /* syn with cubic */ if (ca->last_max_cwnd <= cwnd) { ca->bic_K = 0; ca->bic_origin_point = cwnd; } else { /* Compute new K based on * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ) */ ca->bic_K = cubic_root(cube_factor * (ca->last_max_cwnd - cwnd)); ca->bic_origin_point = ca->last_max_cwnd; } } /* cubic function - calc */ /* calculate c * time^3 / rtt, * while considering overflow in calculation of time^3 * (so time^3 is done by using 64 bit) * and without the support of division of 64bit numbers * (so all divisions are done by using 32 bit) * also NOTE the unit of those veriables * time = (t - K) / 2^bictcp_HZ * c = bic_scale >> 10 * rtt = (srtt >> 3) / HZ * !!! The following code does not have overflow problems, * if the cwnd < 1 million packets !!! */ t = (s32)(tcp_jiffies32 - ca->epoch_start); t += usecs_to_jiffies(ca->delay_min); /* change the unit from HZ to bictcp_HZ */ t <<= BICTCP_HZ; do_div(t, HZ); if (t < ca->bic_K) /* t - K */ offs = ca->bic_K - t; else offs = t - ca->bic_K; /* c/rtt * (t-K)^3 */ delta = (cube_rtt_scale * offs * offs * offs) >> (10 + 3 * BICTCP_HZ); if (t < ca->bic_K) /* below origin*/ bic_target = ca->bic_origin_point - delta; else /* above origin*/ bic_target = ca->bic_origin_point + delta; /* cubic function - calc bictcp_cnt*/ if (bic_target > cwnd) { ca->cnt = cwnd / (bic_target - cwnd); } else { ca->cnt = 100 * cwnd; /* very small increment*/ } /* The initial growth of cubic function may be too conservative * when the available bandwidth is still unknown. */ if (ca->last_max_cwnd == 0 && ca->cnt > 20) ca->cnt = 20; /* increase cwnd 5% per RTT */ tcp_friendliness: /* TCP Friendly */ if (tcp_friendliness) { u32 scale = beta_scale; delta = (cwnd * scale) >> 3; while (ca->ack_cnt > delta) { /* update tcp cwnd */ ca->ack_cnt -= delta; ca->tcp_cwnd++; } if (ca->tcp_cwnd > cwnd) { /* if bic is slower than tcp */ delta = ca->tcp_cwnd - cwnd; max_cnt = cwnd / delta; if (ca->cnt > max_cnt) ca->cnt = max_cnt; } } /* The maximum rate of cwnd increase CUBIC allows is 1 packet per * 2 packets ACKed, meaning cwnd grows at 1.5x per RTT. */ ca->cnt = max(ca->cnt, 2U); } __bpf_kfunc static void roccettcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) { struct tcp_sock *tp = tcp_sk(sk); struct roccettcp *ca = inet_csk_ca(sk); u32 now = jiffies_to_usecs(tcp_jiffies32); u32 bw_limit_detect = 0; u32 roccet_xj; u32 jitter; if (ca->last_rtt > ca->curr_rtt) { jitter = ca->last_rtt - ca->curr_rtt; } else { jitter = ca->curr_rtt - ca->last_rtt; } /* Update roccet paramters */ update_ack_rate(sk); update_min_rtt(sk); update_srrtt(sk); /* ROCCET drain. * Do not increase the cwnd for 100ms after a roccet congestion event */ if (now - ca->roccet_last_event_time_us <= 100 * USEC_PER_MSEC) return; /* Lift off: Detect an exit point for tcp slow start * in networks with large buffers of multiple BDP * Like in cellular networks (5G, ...). */ if (tcp_in_slow_start(tp) && ca->curr_srRTT > sr_rtt_upper_bound && get_ack_rate_diff(ca) >= ack_rate_diff_ss) { ca->epoch_start = 0; /* Handle inital slow start. Here we observe the most problems */ if (tp->snd_ssthresh == TCP_INFINITE_SSTHRESH) { tcp_sk(sk)->snd_ssthresh = tcp_snd_cwnd(tp) / 2; tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) / 2); } else { tcp_sk(sk)->snd_ssthresh = tcp_snd_cwnd(tp) - (tcp_snd_cwnd(tp) / 3); tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - (tcp_snd_cwnd(tp) / 3)); } ca->roccet_last_event_time_us = now; return; } if (tcp_in_slow_start(tp)) { acked = tcp_slow_start(tp, acked); if (!acked) return; } if (ca->bw_limit.next_check == 0) ca->bw_limit.next_check = now + 5 * ca->curr_rtt; ca->bw_limit.sum_cwnd += tcp_snd_cwnd(tp); ca->bw_limit.sum_acked += acked; if (ca->bw_limit.next_check < now) { /* We send more data as we got acked in the last 5 RTTs */ if ((ca->bw_limit.sum_cwnd * 100) / ca->bw_limit.sum_acked >= ack_rate_diff_ca) bw_limit_detect = 1; /* reset struct and set next end of period */ ca->bw_limit.sum_cwnd = 1; /* set to 1 to avoid division by zero */ ca->bw_limit.sum_acked = 1; ca->bw_limit.next_check = now + 5 * ca->curr_rtt; } /* Respects the jitter of the connection and add it on top of the upper bound * for the srRTT */ roccet_xj = ((jitter * 100) / ca->curr_min_rtt_timed.rtt) + sr_rtt_upper_bound; if (roccet_xj < sr_rtt_upper_bound) roccet_xj = sr_rtt_upper_bound; if (ca->curr_srRTT > roccet_xj && bw_limit_detect) { ca->epoch_start = 0; ca->roccet_last_event_time_us = now; ca->cnt = 100 * tcp_snd_cwnd(tp); /* Set Wmax if cwnd is larger than the old Wmax */ if (tcp_snd_cwnd(tp) > ca->last_max_cwnd) ca->last_max_cwnd = tcp_snd_cwnd(tp); tcp_snd_cwnd_set(tp, min(tp->snd_cwnd_clamp, max((tcp_snd_cwnd(tp) * beta) / BICTCP_BETA_SCALE, 2U))); tp->snd_ssthresh = tcp_snd_cwnd(tp); return; } /* Terminates this function if cwnd is not fully utilized. * In mobile networks like 5G, this termination causes the cwnd to be frozen at * an excessively high value. This is because slow start or HyStart massively * exceed the available bandwidth and leave the cwnd at an excessively high * value. The cwnd cannot therefore be fully utilized because it is limited by * the connection capacity. */ if (!tcp_is_cwnd_limited(sk)) return; bictcp_update(ca, tcp_snd_cwnd(tp), acked); tcp_cong_avoid_ai(tp, max(1, ca->cnt), acked); } __bpf_kfunc static u32 roccettcp_recalc_ssthresh(struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); struct roccettcp *ca = inet_csk_ca(sk); if (ignore_loss) return tcp_snd_cwnd(tp); /* Don't exit slow start if loss occurs. */ if (tcp_in_slow_start(tp)) return tcp_snd_cwnd(tp); ca->epoch_start = 0; /* end of epoch */ /* Wmax and fast convergence */ if (tcp_snd_cwnd(tp) < ca->last_max_cwnd && fast_convergence) ca->last_max_cwnd = (tcp_snd_cwnd(tp) * (BICTCP_BETA_SCALE + beta)) / (2 * BICTCP_BETA_SCALE); else ca->last_max_cwnd = tcp_snd_cwnd(tp); return max((tcp_snd_cwnd(tp) * beta) / BICTCP_BETA_SCALE, 2U); } __bpf_kfunc static void roccettcp_state(struct sock *sk, u8 new_state) { struct roccettcp *ca = inet_csk_ca(sk); if (new_state == TCP_CA_Loss) roccettcp_reset(ca); } __bpf_kfunc static void roccettcp_acked(struct sock *sk, const struct ack_sample *sample) { struct roccettcp *ca = inet_csk_ca(sk); /* Some calls are for duplicates without timestamps */ if (sample->rtt_us < 0) return; /* Discard delay samples right after fast recovery */ if (ca->epoch_start && (s32)(tcp_jiffies32 - ca->epoch_start) < HZ) return; u32 delay = sample->rtt_us; if (delay == 0) delay = 1; /* first time call or link delay decreases */ if (ca->delay_min == 0 || ca->delay_min > delay) ca->delay_min = delay; /* Get valid sample for roccet */ if (sample->rtt_us > 0) { ca->last_rtt = ca->curr_rtt; ca->curr_rtt = sample->rtt_us; } } static struct tcp_congestion_ops roccet_tcp __read_mostly = { .init = roccettcp_init, .ssthresh = roccettcp_recalc_ssthresh, .cong_avoid = roccettcp_cong_avoid, .set_state = roccettcp_state, .undo_cwnd = tcp_reno_undo_cwnd, .cwnd_event = roccettcp_cwnd_event, .pkts_acked = roccettcp_acked, .owner = THIS_MODULE, .name = "roccet", }; BTF_KFUNCS_START(tcp_roccet_check_kfunc_ids) BTF_ID_FLAGS(func, roccettcp_init) BTF_ID_FLAGS(func, roccettcp_recalc_ssthresh) BTF_ID_FLAGS(func, roccettcp_cong_avoid) BTF_ID_FLAGS(func, roccettcp_state) BTF_ID_FLAGS(func, roccettcp_cwnd_event) BTF_ID_FLAGS(func, roccettcp_acked) BTF_KFUNCS_END(tcp_roccet_check_kfunc_ids) static const struct btf_kfunc_id_set tcp_roccet_kfunc_set = { .owner = THIS_MODULE, .set = &tcp_roccet_check_kfunc_ids, }; static int __init roccettcp_register(void) { int ret; BUILD_BUG_ON(sizeof(struct roccettcp) > ICSK_CA_PRIV_SIZE); /* Precompute a bunch of the scaling factors that are used per-packet * based on SRTT of 100ms */ beta_scale = 8 * (BICTCP_BETA_SCALE + beta) / 3 / (BICTCP_BETA_SCALE - beta); cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */ /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3 * so K = cubic_root( (wmax-cwnd)*rtt/c ) * the unit of K is bictcp_HZ=2^10, not HZ * * c = bic_scale >> 10 * rtt = 100ms * * the following code has been designed and tested for * cwnd < 1 million packets * RTT < 100 seconds * HZ < 1,000,00 (corresponding to 10 nano-second) */ /* 1/c * 2^2*bictcp_HZ * srtt */ cube_factor = 1ull << (10 + 3 * BICTCP_HZ); /* 2^40 */ /* divide by bic_scale and by constant Srtt (100ms) */ do_div(cube_factor, bic_scale * 10); ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &tcp_roccet_kfunc_set); if (ret < 0) return ret; return tcp_register_congestion_control(&roccet_tcp); } static void __exit roccettcp_unregister(void) { tcp_unregister_congestion_control(&roccet_tcp); } module_init(roccettcp_register); module_exit(roccettcp_unregister); MODULE_AUTHOR("Lukas Prause, Tim Füchsel"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("ROCCET TCP"); MODULE_VERSION("1.0");