| @@ -0,0 +1,164 @@ | |||
| #!/usr/bin/env python3 | |||
| import math | |||
| import multiprocessing | |||
| import os | |||
| from argparse import ArgumentParser | |||
| import matplotlib | |||
| import pandas as pd | |||
| import matplotlib.pyplot as plt | |||
| if __name__ == "__main__": | |||
| parser = ArgumentParser() | |||
| parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.") | |||
| parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.") | |||
| parser.add_argument("--save", default=None, help="Location to save pdf file.") | |||
| parser.add_argument( | |||
| "-i", | |||
| "--interval", | |||
| default=10, | |||
| type=int, | |||
| help="Time interval for rolling window.", | |||
| ) | |||
| args = parser.parse_args() | |||
| manager = multiprocessing.Manager() | |||
| n = manager.Value("i", 0) | |||
| frame_list = manager.list() | |||
| jobs = [] | |||
| # load all pcap csv into one dataframe | |||
| pcap_csv_list = list() | |||
| for filename in os.listdir(args.pcap_csv_folder): | |||
| if filename.endswith(".csv") and "tcp" in filename: | |||
| pcap_csv_list.append(filename) | |||
| counter = 1 | |||
| if len(pcap_csv_list) == 0: | |||
| print("No CSV files found.") | |||
| pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", ""))) | |||
| for csv in pcap_csv_list: | |||
| print("\rProcessing {} out of {} CSVs.\t({}%)\t".format(counter, len(pcap_csv_list), math.floor(counter/len(pcap_csv_list)))) | |||
| try: | |||
| transmission_df = pd.read_csv( | |||
| "{}{}".format(args.pcap_csv_folder, csv), | |||
| dtype=dict(is_retranmission=bool, is_dup_ack=bool), | |||
| ) | |||
| transmission_df["datetime"] = pd.to_datetime(transmission_df["datetime"]) - pd.Timedelta(hours=1) | |||
| transmission_df = transmission_df.set_index("datetime") | |||
| transmission_df.index = pd.to_datetime(transmission_df.index) | |||
| transmission_df = transmission_df.sort_index() | |||
| # srtt to [s] | |||
| transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6) | |||
| # key for columns and level for index | |||
| transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum") | |||
| transmission_df["goodput"] = transmission_df["goodput"].apply( | |||
| lambda x: ((x * 8) / args.interval) / 10**6 | |||
| ) | |||
| transmission_df["goodput_rolling"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum() | |||
| transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply( | |||
| lambda x: ((x * 8) / args.interval) / 10 ** 6 | |||
| ) | |||
| # set meta values and remove all not needed columns | |||
| cc_algo = transmission_df["congestion_control"].iloc[0] | |||
| cc_algo = cc_algo.upper() | |||
| transmission_direction = transmission_df["direction"].iloc[0] | |||
| #transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"]) | |||
| # read serial csv | |||
| serial_df = pd.read_csv(args.serial_file) | |||
| serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1) | |||
| serial_df = serial_df.set_index("datetime") | |||
| serial_df.index = pd.to_datetime(serial_df.index) | |||
| serial_df.sort_index() | |||
| transmission_df = pd.merge_asof( | |||
| transmission_df, | |||
| serial_df, | |||
| tolerance=pd.Timedelta("1s"), | |||
| right_index=True, | |||
| left_index=True, | |||
| ) | |||
| # transmission timeline | |||
| scaley = 1.5 | |||
| scalex = 1.0 | |||
| ax0 = plt.subplots(211, figsize=[6.4 * scaley, 4.8 * scalex]) | |||
| ax1 = ax0.twinx() | |||
| ax2 = ax0.twinx() | |||
| ax00 = plt.subplots(212) | |||
| ax01 = ax00.twinx() | |||
| plt.title("{} with {}".format(transmission_direction, cc_algo)) | |||
| # create list fo color indices for lte cells | |||
| color_dict = dict() | |||
| color_list = list() | |||
| i = 0 | |||
| for cell_id in transmission_df["PCID"]: | |||
| if cell_id not in color_dict: | |||
| color_dict[cell_id] = i | |||
| i += 1 | |||
| color_list.append(color_dict[cell_id]) | |||
| transmission_df["lte_cell_color"] = color_list | |||
| color_dict = None | |||
| color_list = None | |||
| cmap = matplotlib.cm.get_cmap("Set3") | |||
| unique_cells = transmission_df["lte_cell_color"].unique() | |||
| color_list = cmap.colors * (round(len(unique_cells) / len(cmap.colors)) + 1) | |||
| # create list fo color indices for nr cells | |||
| color_dict = dict() | |||
| color_list = list() | |||
| i = 0 | |||
| for cell_id in transmission_df["PCID.1"]: | |||
| if cell_id not in color_dict: | |||
| color_dict[cell_id] = i | |||
| i += 1 | |||
| color_list.append(color_dict[cell_id]) | |||
| transmission_df["nr_cell_color"] = color_list | |||
| color_dict = None | |||
| color_list = None | |||
| cmap = matplotlib.cm.get_cmap("Set3") | |||
| unique_cells = transmission_df["nr_cell_color"].unique() | |||
| color_list = cmap.colors * (round(len(unique_cells) / len(cmap.colors)) + 1) | |||
| transmission_df["index"] = transmission_df.index | |||
| for c in transmission_df["lte_cell_color"].unique(): | |||
| bounds = transmission_df[["index", "lte_cell_color"]].groupby("lte_cell_color").agg(["min", "max"]).loc[c] | |||
| ax0.axvspan(bounds.min(), bounds.max(), alpha=0.1, color=color_list[c]) | |||
| for c in transmission_df["nr_cell_color"].unique(): | |||
| bounds = transmission_df[["index", "nr_cell_color"]].groupby("nr_cell_color").agg(["min", "max"]).loc[c] | |||
| ax00.axvspan(bounds.min(), bounds.max(), alpha=0.1, color=color_list[c]) | |||
| ax0.plot(transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd") | |||
| ax1.plot(transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT") | |||
| ax2.plot(transmission_df["goodput_rolling"], color="blue", linestyle="solid", label="goodput") | |||
| ax00.plot(transmission_df["downlink_cqi"].dropna(), color="magenta", linestyle="dotted", label="CQI") | |||
| ax01.plot(transmission_df["DL_bandwidth"].dropna(), color="peru", linestyle="dotted", label="DL_bandwidth") | |||
| if args.save: | |||
| plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", ""))) | |||
| except Exception as e: | |||
| print("Error processing file: {}".format(csv)) | |||
| print(str(e)) | |||
| counter += 1 | |||
| plt.clf() | |||