Bladeren bron

Plot pcid and scid.

master
Lukas Prause 2 jaren geleden
bovenliggende
commit
7a35d5014d
1 gewijzigde bestanden met toevoegingen van 164 en 0 verwijderingen
  1. +164
    -0
      plot_single_transmission.py

+ 164
- 0
plot_single_transmission.py Bestand weergeven

@@ -0,0 +1,164 @@
#!/usr/bin/env python3
import math
import multiprocessing
import os
from argparse import ArgumentParser

import matplotlib
import pandas as pd
import matplotlib.pyplot as plt


if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.")
parser.add_argument("--save", default=None, help="Location to save pdf file.")
parser.add_argument(
"-i",
"--interval",
default=10,
type=int,
help="Time interval for rolling window.",
)

args = parser.parse_args()
manager = multiprocessing.Manager()
n = manager.Value("i", 0)
frame_list = manager.list()
jobs = []

# load all pcap csv into one dataframe
pcap_csv_list = list()
for filename in os.listdir(args.pcap_csv_folder):
if filename.endswith(".csv") and "tcp" in filename:
pcap_csv_list.append(filename)

counter = 1
if len(pcap_csv_list) == 0:
print("No CSV files found.")

pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", "")))

for csv in pcap_csv_list:

print("\rProcessing {} out of {} CSVs.\t({}%)\t".format(counter, len(pcap_csv_list), math.floor(counter/len(pcap_csv_list))))

try:
transmission_df = pd.read_csv(
"{}{}".format(args.pcap_csv_folder, csv),
dtype=dict(is_retranmission=bool, is_dup_ack=bool),
)

transmission_df["datetime"] = pd.to_datetime(transmission_df["datetime"]) - pd.Timedelta(hours=1)
transmission_df = transmission_df.set_index("datetime")
transmission_df.index = pd.to_datetime(transmission_df.index)
transmission_df = transmission_df.sort_index()

# srtt to [s]
transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6)

# key for columns and level for index
transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum")
transmission_df["goodput"] = transmission_df["goodput"].apply(
lambda x: ((x * 8) / args.interval) / 10**6
)

transmission_df["goodput_rolling"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
lambda x: ((x * 8) / args.interval) / 10 ** 6
)

# set meta values and remove all not needed columns
cc_algo = transmission_df["congestion_control"].iloc[0]
cc_algo = cc_algo.upper()
transmission_direction = transmission_df["direction"].iloc[0]

#transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"])

# read serial csv
serial_df = pd.read_csv(args.serial_file)
serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1)
serial_df = serial_df.set_index("datetime")
serial_df.index = pd.to_datetime(serial_df.index)
serial_df.sort_index()

transmission_df = pd.merge_asof(
transmission_df,
serial_df,
tolerance=pd.Timedelta("1s"),
right_index=True,
left_index=True,
)

# transmission timeline

scaley = 1.5
scalex = 1.0
ax0 = plt.subplots(211, figsize=[6.4 * scaley, 4.8 * scalex])
ax1 = ax0.twinx()
ax2 = ax0.twinx()

ax00 = plt.subplots(212)
ax01 = ax00.twinx()

plt.title("{} with {}".format(transmission_direction, cc_algo))

# create list fo color indices for lte cells
color_dict = dict()
color_list = list()
i = 0
for cell_id in transmission_df["PCID"]:
if cell_id not in color_dict:
color_dict[cell_id] = i
i += 1
color_list.append(color_dict[cell_id])

transmission_df["lte_cell_color"] = color_list
color_dict = None
color_list = None

cmap = matplotlib.cm.get_cmap("Set3")
unique_cells = transmission_df["lte_cell_color"].unique()
color_list = cmap.colors * (round(len(unique_cells) / len(cmap.colors)) + 1)

# create list fo color indices for nr cells
color_dict = dict()
color_list = list()
i = 0
for cell_id in transmission_df["PCID.1"]:
if cell_id not in color_dict:
color_dict[cell_id] = i
i += 1
color_list.append(color_dict[cell_id])

transmission_df["nr_cell_color"] = color_list
color_dict = None
color_list = None

cmap = matplotlib.cm.get_cmap("Set3")
unique_cells = transmission_df["nr_cell_color"].unique()
color_list = cmap.colors * (round(len(unique_cells) / len(cmap.colors)) + 1)

transmission_df["index"] = transmission_df.index
for c in transmission_df["lte_cell_color"].unique():
bounds = transmission_df[["index", "lte_cell_color"]].groupby("lte_cell_color").agg(["min", "max"]).loc[c]
ax0.axvspan(bounds.min(), bounds.max(), alpha=0.1, color=color_list[c])
for c in transmission_df["nr_cell_color"].unique():
bounds = transmission_df[["index", "nr_cell_color"]].groupby("nr_cell_color").agg(["min", "max"]).loc[c]
ax00.axvspan(bounds.min(), bounds.max(), alpha=0.1, color=color_list[c])

ax0.plot(transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd")
ax1.plot(transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT")
ax2.plot(transmission_df["goodput_rolling"], color="blue", linestyle="solid", label="goodput")
ax00.plot(transmission_df["downlink_cqi"].dropna(), color="magenta", linestyle="dotted", label="CQI")
ax01.plot(transmission_df["DL_bandwidth"].dropna(), color="peru", linestyle="dotted", label="DL_bandwidth")

if args.save:
plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", "")))
except Exception as e:
print("Error processing file: {}".format(csv))
print(str(e))
counter += 1

plt.clf()

Laden…
Annuleren
Opslaan