ソースを参照

Changes for new modem.

master
Lukas Prause 2年前
コミット
ac801dc5ac
2個のファイルの変更196行の追加33行の削除
  1. +19
    -33
      format_serial_txt_to_csv_EM9190.py
  2. +177
    -0
      plot_single_transmission_EM9190.py

+ 19
- 33
format_serial_txt_to_csv_EM9190.py ファイルの表示

@@ -1,5 +1,4 @@
#!/usr/bin/env python3
import csv
import datetime
import re
from argparse import ArgumentParser
@@ -7,7 +6,6 @@ import pandas as pd

KEY_VALUE_REGEX = r"(.+):(.+)"


if __name__ == "__main__":

parser = ArgumentParser()
@@ -18,54 +16,42 @@ if __name__ == "__main__":
content = file.read()
file.close()

header = ["time"]
csv_lines = list()
serial_df = None
p = re.compile(KEY_VALUE_REGEX)

for part in content.split(";;;"):
if part == "":
break
part = part.replace("\t", "\n").strip()

csv_line = list()
time = None
line_dict = dict(time=None)
for line in part.split("\n"):
if not line.startswith("!") or line == "" or line == "\n":
if time is None:
if line_dict["time"] is None:
time = line
csv_line.append(time)
line_dict["time"] = [time]
m = p.match(line)
if m:
key = m.group(1).strip().replace(" ", "_")
value = m.group(2).replace("MHz", "").strip()

if key not in header:
header.append(key)

csv_line.append(value)
if len(csv_line) > 1:
#print(csv_line)
csv_lines.append(csv_line)
value = m.group(2).replace("MHz", "").replace("---", "").strip()

line_dict[key] = [value]

if len(line_dict) > 1:
#print("line:")
#print(line_dict)
#print("serial_df:")
#print(serial_df)
if serial_df is None:
serial_df = pd.DataFrame.from_dict(line_dict, orient="columns",)
else:
serial_df = pd.concat([serial_df, pd.DataFrame.from_dict(line_dict, orient="columns")])

outputfile = open(args.file.replace("txt", "csv"), "w")
writer = csv.writer(outputfile, delimiter=",", lineterminator="\n", escapechar='\\')
writer.writerow(header)
#print(all_csv_lines)
for l in csv_lines:
#print(l)
writer.writerow(l)

outputfile.close()

outputfile = open(args.file.replace("txt", "csv"), "r")
serial_df = pd.read_csv(outputfile)
serial_df = serial_df.copy()
serial_df["datetime"] = pd.to_datetime(
serial_df["time"].apply(lambda x: datetime.datetime.fromtimestamp(x))
serial_df["time"].apply(lambda x: datetime.datetime.fromtimestamp(int(x)))
)
serial_df.to_csv(args.file.replace("txt", "csv"))
outputfile.close()



#serial_df = serial_df.filter(["datetime", "LTE_bw", "LTE_SCC2_bw", "LTE_SCC3_bw", "LTE_SCC4_bw", "SCC1_NR5G_bw", "NR5G_dl_bw", "NR5G_ul_bw", "LTE_SCC1_bw", "NR5G_bw"])
#print(serial_df.to_string())

+ 177
- 0
plot_single_transmission_EM9190.py ファイルの表示

@@ -0,0 +1,177 @@
#!/usr/bin/env python3
import math
import multiprocessing
import os
from argparse import ArgumentParser

import matplotlib
import pandas as pd
import matplotlib.pyplot as plt

# Using seaborn's style
#plt.style.use('seaborn')

tex_fonts = {
"pgf.texsystem": "lualatex",
# "legend.fontsize": "x-large",
# "figure.figsize": (15, 5),
"axes.labelsize": 15, # "small",
# "axes.titlesize": "x-large",
"xtick.labelsize": 15, # "small",
"ytick.labelsize": 15, # "small",
"legend.fontsize": 15,
"axes.formatter.use_mathtext": True,
"mathtext.fontset": "dejavusans",
}

#plt.rcParams.update(tex_fonts)


if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.")
parser.add_argument("--save", required=True, help="Location to save pdf file.")
parser.add_argument(
"-i",
"--interval",
default=10,
type=int,
help="Time interval for rolling window.",
)

args = parser.parse_args()

pcap_csv_list = list()
for filename in os.listdir(args.pcap_csv_folder):
if filename.endswith(".csv") and "tcp" in filename:
pcap_csv_list.append(filename)

counter = 1
if len(pcap_csv_list) == 0:
print("No CSV files found.")

pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", "")))

for csv in pcap_csv_list:

print("\rProcessing {} out of {} CSVs.\t({}%)\t".format(counter, len(pcap_csv_list), math.floor(counter/len(pcap_csv_list))))

#try:
transmission_df = pd.read_csv(
"{}{}".format(args.pcap_csv_folder, csv),
dtype=dict(is_retranmission=bool, is_dup_ack=bool),
)

transmission_df["datetime"] = pd.to_datetime(transmission_df["datetime"]) - pd.Timedelta(hours=1)
transmission_df = transmission_df.set_index("datetime")
transmission_df.index = pd.to_datetime(transmission_df.index)
transmission_df = transmission_df.sort_index()

# srtt to [s]
transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6)

# key for columns and level for index
transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum")
transmission_df["goodput"] = transmission_df["goodput"].apply(
lambda x: ((x * 8) / args.interval) / 10**6
)

transmission_df["goodput_rolling"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
lambda x: ((x * 8) / args.interval) / 10 ** 6
)

# set meta values and remove all not needed columns
cc_algo = transmission_df["congestion_control"].iloc[0]
cc_algo = cc_algo.upper()
transmission_direction = transmission_df["direction"].iloc[0]

#transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"])

# read serial csv
serial_df = pd.read_csv(args.serial_file)
serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1)
serial_df = serial_df.set_index("datetime")
serial_df.index = pd.to_datetime(serial_df.index)
serial_df.sort_index()

transmission_df = pd.merge_asof(
transmission_df,
serial_df,
tolerance=pd.Timedelta("1s"),
right_index=True,
left_index=True,
)

# sum bandwidth
# columns: LTE_bw, LTE_SCC2_bw, LTE_SCC3_bw, LTE_SCC4_bw, SCC1_NR5G_bw, NR5G_dl_bw, NR5G_ul_bw, LTE_SCC1_bw, NR5G_bw
transmission_df["bw_sum"] = transmission_df["LTE_bw"] + transmission_df["LTE_SCC2_bw"] \
+ transmission_df["LTE_SCC3_bw"] + transmission_df["LTE_SCC4_bw"] \
+ transmission_df["SCC1_NR5G_bw"] + transmission_df["NR5G_dl_bw"] \
+ transmission_df["LTE_SCC1_bw"]

transmission_df.index = transmission_df["arrival_time"]

# transmission timeline
scaley = 1.5
scalex = 1.0
plt.title("{} with {}".format(transmission_direction, cc_algo))
fig, ax = plt.subplots(2, 1, figsize=[6.4 * scaley, 4.8 * scalex])
fig.subplots_adjust(right=0.75)
fig.suptitle("{} with {}".format(transmission_direction, cc_algo))
ax0 = ax[0]
ax1 = ax0.twinx()
ax2 = ax0.twinx()
#ax2.spines.right.set_position(("axes", 1.22))

ax00 = ax[1]
ax01 = ax00.twinx()
ax02 = ax00.twinx()

# Plot vertical lines
lte_handovers = transmission_df["lte_pcid"].diff().dropna()
for index, value in lte_handovers.items():
if value > 0:
ax00.axvline(index, ymin=0, ymax=1, color="skyblue", label="4G Handover")

nr_handovers = transmission_df["nr_pcid"].diff().dropna()
for index, value in nr_handovers.items():
if value > 0:
ax00.axvline(index, ymin=0, ymax=1, color="greenyellow", label="5G Handover")

ax0.plot(transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd")
ax1.plot(transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT")
ax2.plot(transmission_df["goodput_rolling"], color="blue", linestyle="solid", label="goodput")
ax00.plot(transmission_df["NR5G_RSRQ_(dB)"].dropna(), color="magenta", linestyle="dotted", label="NR RSRQ")
ax01.plot(transmission_df["bw_sum"].dropna(), color="peru", linestyle="dotted", label="bandwidth")
ax02.plot(transmission_df["RSRQ_(dB)"].dropna(), color="magenta", linestyle="dotted", label="LTE RSRQ")

ax2.spines.right.set_position(("axes", 1.1))

ax0.set_ylim(0, 5000)
ax1.set_ylim(0, 0.3)
ax2.set_ylim(0, 500)
ax00.set_ylim(-25, -5)
ax01.set_ylim(0, 200)
ax02.set_ylim(-25, -5)

ax00.set_xlabel("arrival time [s]")
ax2.set_ylabel("Goodput [mbps]")
ax00.set_ylabel("NR RSRQ [dB]")
ax02.set_ylabel("LTE RSRQ [dB]")
ax1.set_ylabel("sRTT [s]")
ax0.set_ylabel("cwnd")
ax01.set_ylabel("Bandwidth [MHz]")

fig.legend(loc="lower right")

plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", "")))
#except Exception as e:
# print("Error processing file: {}".format(csv))
# print(str(e))
counter += 1

plt.close(fig)
plt.clf()

読み込み中…
キャンセル
保存