|
|
|
@@ -0,0 +1,177 @@ |
|
|
|
#!/usr/bin/env python3 |
|
|
|
import math |
|
|
|
import multiprocessing |
|
|
|
import os |
|
|
|
from argparse import ArgumentParser |
|
|
|
|
|
|
|
import matplotlib |
|
|
|
import pandas as pd |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
# Using seaborn's style |
|
|
|
#plt.style.use('seaborn') |
|
|
|
|
|
|
|
tex_fonts = { |
|
|
|
"pgf.texsystem": "lualatex", |
|
|
|
# "legend.fontsize": "x-large", |
|
|
|
# "figure.figsize": (15, 5), |
|
|
|
"axes.labelsize": 15, # "small", |
|
|
|
# "axes.titlesize": "x-large", |
|
|
|
"xtick.labelsize": 15, # "small", |
|
|
|
"ytick.labelsize": 15, # "small", |
|
|
|
"legend.fontsize": 15, |
|
|
|
"axes.formatter.use_mathtext": True, |
|
|
|
"mathtext.fontset": "dejavusans", |
|
|
|
} |
|
|
|
|
|
|
|
#plt.rcParams.update(tex_fonts) |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
parser = ArgumentParser() |
|
|
|
parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.") |
|
|
|
parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.") |
|
|
|
parser.add_argument("--save", required=True, help="Location to save pdf file.") |
|
|
|
parser.add_argument( |
|
|
|
"-i", |
|
|
|
"--interval", |
|
|
|
default=10, |
|
|
|
type=int, |
|
|
|
help="Time interval for rolling window.", |
|
|
|
) |
|
|
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
pcap_csv_list = list() |
|
|
|
for filename in os.listdir(args.pcap_csv_folder): |
|
|
|
if filename.endswith(".csv") and "tcp" in filename: |
|
|
|
pcap_csv_list.append(filename) |
|
|
|
|
|
|
|
counter = 1 |
|
|
|
if len(pcap_csv_list) == 0: |
|
|
|
print("No CSV files found.") |
|
|
|
|
|
|
|
pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", ""))) |
|
|
|
|
|
|
|
for csv in pcap_csv_list: |
|
|
|
|
|
|
|
print("\rProcessing {} out of {} CSVs.\t({}%)\t".format(counter, len(pcap_csv_list), math.floor(counter/len(pcap_csv_list)))) |
|
|
|
|
|
|
|
#try: |
|
|
|
transmission_df = pd.read_csv( |
|
|
|
"{}{}".format(args.pcap_csv_folder, csv), |
|
|
|
dtype=dict(is_retranmission=bool, is_dup_ack=bool), |
|
|
|
) |
|
|
|
|
|
|
|
transmission_df["datetime"] = pd.to_datetime(transmission_df["datetime"]) - pd.Timedelta(hours=1) |
|
|
|
transmission_df = transmission_df.set_index("datetime") |
|
|
|
transmission_df.index = pd.to_datetime(transmission_df.index) |
|
|
|
transmission_df = transmission_df.sort_index() |
|
|
|
|
|
|
|
# srtt to [s] |
|
|
|
transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6) |
|
|
|
|
|
|
|
# key for columns and level for index |
|
|
|
transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum") |
|
|
|
transmission_df["goodput"] = transmission_df["goodput"].apply( |
|
|
|
lambda x: ((x * 8) / args.interval) / 10**6 |
|
|
|
) |
|
|
|
|
|
|
|
transmission_df["goodput_rolling"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum() |
|
|
|
transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply( |
|
|
|
lambda x: ((x * 8) / args.interval) / 10 ** 6 |
|
|
|
) |
|
|
|
|
|
|
|
# set meta values and remove all not needed columns |
|
|
|
cc_algo = transmission_df["congestion_control"].iloc[0] |
|
|
|
cc_algo = cc_algo.upper() |
|
|
|
transmission_direction = transmission_df["direction"].iloc[0] |
|
|
|
|
|
|
|
#transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"]) |
|
|
|
|
|
|
|
# read serial csv |
|
|
|
serial_df = pd.read_csv(args.serial_file) |
|
|
|
serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1) |
|
|
|
serial_df = serial_df.set_index("datetime") |
|
|
|
serial_df.index = pd.to_datetime(serial_df.index) |
|
|
|
serial_df.sort_index() |
|
|
|
|
|
|
|
transmission_df = pd.merge_asof( |
|
|
|
transmission_df, |
|
|
|
serial_df, |
|
|
|
tolerance=pd.Timedelta("1s"), |
|
|
|
right_index=True, |
|
|
|
left_index=True, |
|
|
|
) |
|
|
|
|
|
|
|
# sum bandwidth |
|
|
|
# columns: LTE_bw, LTE_SCC2_bw, LTE_SCC3_bw, LTE_SCC4_bw, SCC1_NR5G_bw, NR5G_dl_bw, NR5G_ul_bw, LTE_SCC1_bw, NR5G_bw |
|
|
|
transmission_df["bw_sum"] = transmission_df["LTE_bw"] + transmission_df["LTE_SCC2_bw"] \ |
|
|
|
+ transmission_df["LTE_SCC3_bw"] + transmission_df["LTE_SCC4_bw"] \ |
|
|
|
+ transmission_df["SCC1_NR5G_bw"] + transmission_df["NR5G_dl_bw"] \ |
|
|
|
+ transmission_df["LTE_SCC1_bw"] |
|
|
|
|
|
|
|
transmission_df.index = transmission_df["arrival_time"] |
|
|
|
|
|
|
|
# transmission timeline |
|
|
|
scaley = 1.5 |
|
|
|
scalex = 1.0 |
|
|
|
plt.title("{} with {}".format(transmission_direction, cc_algo)) |
|
|
|
fig, ax = plt.subplots(2, 1, figsize=[6.4 * scaley, 4.8 * scalex]) |
|
|
|
fig.subplots_adjust(right=0.75) |
|
|
|
fig.suptitle("{} with {}".format(transmission_direction, cc_algo)) |
|
|
|
ax0 = ax[0] |
|
|
|
ax1 = ax0.twinx() |
|
|
|
ax2 = ax0.twinx() |
|
|
|
#ax2.spines.right.set_position(("axes", 1.22)) |
|
|
|
|
|
|
|
ax00 = ax[1] |
|
|
|
ax01 = ax00.twinx() |
|
|
|
ax02 = ax00.twinx() |
|
|
|
|
|
|
|
# Plot vertical lines |
|
|
|
lte_handovers = transmission_df["lte_pcid"].diff().dropna() |
|
|
|
for index, value in lte_handovers.items(): |
|
|
|
if value > 0: |
|
|
|
ax00.axvline(index, ymin=0, ymax=1, color="skyblue", label="4G Handover") |
|
|
|
|
|
|
|
nr_handovers = transmission_df["nr_pcid"].diff().dropna() |
|
|
|
for index, value in nr_handovers.items(): |
|
|
|
if value > 0: |
|
|
|
ax00.axvline(index, ymin=0, ymax=1, color="greenyellow", label="5G Handover") |
|
|
|
|
|
|
|
ax0.plot(transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd") |
|
|
|
ax1.plot(transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT") |
|
|
|
ax2.plot(transmission_df["goodput_rolling"], color="blue", linestyle="solid", label="goodput") |
|
|
|
ax00.plot(transmission_df["NR5G_RSRQ_(dB)"].dropna(), color="magenta", linestyle="dotted", label="NR RSRQ") |
|
|
|
ax01.plot(transmission_df["bw_sum"].dropna(), color="peru", linestyle="dotted", label="bandwidth") |
|
|
|
ax02.plot(transmission_df["RSRQ_(dB)"].dropna(), color="magenta", linestyle="dotted", label="LTE RSRQ") |
|
|
|
|
|
|
|
ax2.spines.right.set_position(("axes", 1.1)) |
|
|
|
|
|
|
|
ax0.set_ylim(0, 5000) |
|
|
|
ax1.set_ylim(0, 0.3) |
|
|
|
ax2.set_ylim(0, 500) |
|
|
|
ax00.set_ylim(-25, -5) |
|
|
|
ax01.set_ylim(0, 200) |
|
|
|
ax02.set_ylim(-25, -5) |
|
|
|
|
|
|
|
ax00.set_xlabel("arrival time [s]") |
|
|
|
|
|
|
|
ax2.set_ylabel("Goodput [mbps]") |
|
|
|
ax00.set_ylabel("NR RSRQ [dB]") |
|
|
|
ax02.set_ylabel("LTE RSRQ [dB]") |
|
|
|
ax1.set_ylabel("sRTT [s]") |
|
|
|
ax0.set_ylabel("cwnd") |
|
|
|
ax01.set_ylabel("Bandwidth [MHz]") |
|
|
|
|
|
|
|
fig.legend(loc="lower right") |
|
|
|
|
|
|
|
plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", ""))) |
|
|
|
#except Exception as e: |
|
|
|
# print("Error processing file: {}".format(csv)) |
|
|
|
# print(str(e)) |
|
|
|
counter += 1 |
|
|
|
|
|
|
|
plt.close(fig) |
|
|
|
plt.clf() |