| @@ -10,188 +10,41 @@ import geopandas as gpd | |||
| import contextily as cx | |||
| import matplotlib.pyplot as plt | |||
| def csv_to_dataframe(csv_list, dummy): | |||
| global n | |||
| global frame_list | |||
| transmission_df = None | |||
| for csv in csv_list: | |||
| tmp_df = pd.read_csv( | |||
| "{}{}".format(args.pcap_csv_folder, csv), | |||
| dtype=dict(is_retranmission=bool, is_dup_ack=bool), | |||
| ) | |||
| #tmp_df["datetime"] = pd.to_datetime(tmp_df["datetime"]) - pd.Timedelta(hours=1) | |||
| tmp_df["datetime"] = pd.to_datetime(tmp_df["datetime"]) | |||
| tmp_df = tmp_df.set_index("datetime") | |||
| tmp_df.index = pd.to_datetime(tmp_df.index) | |||
| if transmission_df is None: | |||
| transmission_df = tmp_df | |||
| else: | |||
| transmission_df = pd.concat([transmission_df, tmp_df]) | |||
| n.value += 1 | |||
| frame_list.append(transmission_df) | |||
| from itertools import islice | |||
| def chunk(it, size): | |||
| it = iter(it) | |||
| return iter(lambda: tuple(islice(it, size)), ()) | |||
| if __name__ == "__main__": | |||
| parser = ArgumentParser() | |||
| parser.add_argument("-f", "--gps_file", required=True, help="GPS csv file.") | |||
| parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.") | |||
| parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.") | |||
| parser.add_argument("-f", "--file", required=True, help="Messfahrt csv") | |||
| parser.add_argument("-a", "--column", required=True, help="Column to plot") | |||
| parser.add_argument("-l", "--label", help="Label above the plot.") | |||
| parser.add_argument("--no_legend", action="store_false", default=True, help="Do not show legend.") | |||
| parser.add_argument("--save", default=None, help="Location to save pdf file.") | |||
| parser.add_argument("--time_offset", default=None, type=int, help="Minutes added to GPS datetime.") | |||
| parser.add_argument("--no_plot", default=False, action="store_true", help="Only calculations without plotting.") | |||
| parser.add_argument( | |||
| "--show_providerinfo", | |||
| default=False, | |||
| help="Show providerinfo for map tiles an zoom levels.", | |||
| ) | |||
| parser.add_argument( | |||
| "-c", | |||
| "--cores", | |||
| default=1, | |||
| type=int, | |||
| help="Number of cores for multiprocessing.", | |||
| ) | |||
| parser.add_argument( | |||
| "-i", | |||
| "--interval", | |||
| default=10, | |||
| type=int, | |||
| help="Time interval for rolling window.", | |||
| ) | |||
| args = parser.parse_args() | |||
| manager = multiprocessing.Manager() | |||
| n = manager.Value("i", 0) | |||
| frame_list = manager.list() | |||
| jobs = [] | |||
| # load all pcap csv into one dataframe | |||
| pcap_csv_list = list() | |||
| for filename in os.listdir(args.pcap_csv_folder): | |||
| if filename.endswith(".csv") and "tcp" in filename: | |||
| pcap_csv_list.append(filename) | |||
| parts = chunk(pcap_csv_list, ceil(len(pcap_csv_list) / args.cores)) | |||
| print("Start processing with {} jobs.".format(args.cores)) | |||
| for p in parts: | |||
| process = multiprocessing.Process(target=csv_to_dataframe, args=(p, "dummy")) | |||
| jobs.append(process) | |||
| for j in jobs: | |||
| j.start() | |||
| print("Started all jobs.") | |||
| # Ensure all of the processes have finished | |||
| finished_job_counter = 0 | |||
| working = ["|", "/", "-", "\\", "|", "/", "-", "\\"] | |||
| w = 0 | |||
| while len(jobs) != finished_job_counter: | |||
| sleep(1) | |||
| print( | |||
| "\r\t{}{}{}\t Running {} jobs ({} finished). Processed {} out of {} pcap csv files. ({}%) ".format( | |||
| working[w], | |||
| working[w], | |||
| working[w], | |||
| len(jobs), | |||
| finished_job_counter, | |||
| n.value, | |||
| len(pcap_csv_list), | |||
| round((n.value / len(pcap_csv_list)) * 100, 2), | |||
| ), | |||
| end="", | |||
| ) | |||
| finished_job_counter = 0 | |||
| for j in jobs: | |||
| if not j.is_alive(): | |||
| finished_job_counter += 1 | |||
| if (w + 1) % len(working) == 0: | |||
| w = 0 | |||
| else: | |||
| w += 1 | |||
| print("\r\nSorting table...") | |||
| transmission_df = pd.concat(frame_list) | |||
| frame_list = None | |||
| transmission_df = transmission_df.sort_index() | |||
| print("Calculate goodput...") | |||
| transmission_df["goodput"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum() | |||
| transmission_df["goodput"] = transmission_df["goodput"].apply( | |||
| lambda x: ((x * 8) / args.interval) / 10**6 | |||
| ) | |||
| # load dataframe an put it into geopandas | |||
| df = pd.read_csv(args.gps_file) | |||
| df["kmh"] = df["speed (knots)"].apply(lambda x: x * 1.852) | |||
| if args.time_offset: | |||
| df["datetime"] = pd.to_datetime(df["datetime"]) + pd.Timedelta(minutes=args.time_offset) | |||
| else: | |||
| df["datetime"] = pd.to_datetime(df["datetime"]) | |||
| df = df.set_index("datetime") | |||
| df.index = pd.to_datetime(df.index) | |||
| df = pd.read_csv(args.file) | |||
| gdf = gpd.GeoDataFrame( | |||
| df, | |||
| geometry=gpd.points_from_xy(df["longitude"], df["latitude"]), | |||
| crs="EPSG:4326", | |||
| ) | |||
| gdf = pd.merge_asof( | |||
| gdf, | |||
| transmission_df, | |||
| tolerance=pd.Timedelta("10s"), | |||
| right_index=True, | |||
| left_index=True, | |||
| ) | |||
| # read serial csv | |||
| serial_df = pd.read_csv(args.serial_file) | |||
| #serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1) | |||
| serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) | |||
| serial_df = serial_df.set_index("datetime") | |||
| serial_df.index = pd.to_datetime(serial_df.index) | |||
| gdf = pd.merge_asof( | |||
| gdf, | |||
| serial_df, | |||
| tolerance=pd.Timedelta("1s"), | |||
| right_index=True, | |||
| left_index=True, | |||
| ) | |||
| # format to needed format and add basemap as background | |||
| df_wm = gdf.to_crs(epsg=3857) | |||
| #df_wm.to_csv("debug-data.csv") | |||
| # ax2 = df_wm.plot(figsize=(10, 10), alpha=0.5, edgecolor='k') | |||
| if args.no_plot: | |||
| df_wm.to_csv("{}gps_plot.csv".format(args.save)) | |||
| print("Saved calculations to: {}gps_plot.csv".format(args.save)) | |||
| exit(0) | |||
| gdf["srtt"] = gdf["srtt"].apply(lambda x: x / 10 ** 6) | |||
| print("Start plotting...") | |||
| df_wm = gdf.to_crs(epsg=3857) | |||
| ax2 = df_wm.plot() | |||
| ax2 = df_wm.plot(args.column, cmap="hot", legend=args.no_legend, ax=ax2) | |||
| # ax2 = df_wm.plot.scatter(x="longitude", y="latitude", c="kmh", cmap="hot") | |||
| # zoom 17 is pretty | |||
| cx.add_basemap(ax2, source=cx.providers.OpenStreetMap.Mapnik, zoom=15) | |||
| cx.add_basemap(ax2, source=cx.providers.OpenStreetMap.Mapnik, zoom=17) | |||
| # gdf.plot() | |||
| ax2.set_axis_off() | |||