Lukas Prause 2 роки тому
джерело
коміт
c44c359b2f
1 змінених файлів з 5 додано та 152 видалено
  1. +5
    -152
      plot_gps_new.py

+ 5
- 152
plot_gps_new.py Переглянути файл

@@ -10,188 +10,41 @@ import geopandas as gpd
import contextily as cx
import matplotlib.pyplot as plt


def csv_to_dataframe(csv_list, dummy):

global n
global frame_list

transmission_df = None

for csv in csv_list:
tmp_df = pd.read_csv(
"{}{}".format(args.pcap_csv_folder, csv),
dtype=dict(is_retranmission=bool, is_dup_ack=bool),
)
#tmp_df["datetime"] = pd.to_datetime(tmp_df["datetime"]) - pd.Timedelta(hours=1)
tmp_df["datetime"] = pd.to_datetime(tmp_df["datetime"])
tmp_df = tmp_df.set_index("datetime")
tmp_df.index = pd.to_datetime(tmp_df.index)
if transmission_df is None:
transmission_df = tmp_df
else:
transmission_df = pd.concat([transmission_df, tmp_df])

n.value += 1

frame_list.append(transmission_df)


from itertools import islice


def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())


if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("-f", "--gps_file", required=True, help="GPS csv file.")
parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.")
parser.add_argument("-f", "--file", required=True, help="Messfahrt csv")
parser.add_argument("-a", "--column", required=True, help="Column to plot")
parser.add_argument("-l", "--label", help="Label above the plot.")
parser.add_argument("--no_legend", action="store_false", default=True, help="Do not show legend.")
parser.add_argument("--save", default=None, help="Location to save pdf file.")
parser.add_argument("--time_offset", default=None, type=int, help="Minutes added to GPS datetime.")
parser.add_argument("--no_plot", default=False, action="store_true", help="Only calculations without plotting.")

parser.add_argument(
"--show_providerinfo",
default=False,
help="Show providerinfo for map tiles an zoom levels.",
)
parser.add_argument(
"-c",
"--cores",
default=1,
type=int,
help="Number of cores for multiprocessing.",
)
parser.add_argument(
"-i",
"--interval",
default=10,
type=int,
help="Time interval for rolling window.",
)

args = parser.parse_args()
manager = multiprocessing.Manager()
n = manager.Value("i", 0)
frame_list = manager.list()
jobs = []

# load all pcap csv into one dataframe
pcap_csv_list = list()
for filename in os.listdir(args.pcap_csv_folder):
if filename.endswith(".csv") and "tcp" in filename:
pcap_csv_list.append(filename)

parts = chunk(pcap_csv_list, ceil(len(pcap_csv_list) / args.cores))
print("Start processing with {} jobs.".format(args.cores))
for p in parts:
process = multiprocessing.Process(target=csv_to_dataframe, args=(p, "dummy"))
jobs.append(process)

for j in jobs:
j.start()

print("Started all jobs.")
# Ensure all of the processes have finished
finished_job_counter = 0
working = ["|", "/", "-", "\\", "|", "/", "-", "\\"]
w = 0
while len(jobs) != finished_job_counter:
sleep(1)
print(
"\r\t{}{}{}\t Running {} jobs ({} finished). Processed {} out of {} pcap csv files. ({}%) ".format(
working[w],
working[w],
working[w],
len(jobs),
finished_job_counter,
n.value,
len(pcap_csv_list),
round((n.value / len(pcap_csv_list)) * 100, 2),
),
end="",
)
finished_job_counter = 0
for j in jobs:
if not j.is_alive():
finished_job_counter += 1
if (w + 1) % len(working) == 0:
w = 0
else:
w += 1
print("\r\nSorting table...")

transmission_df = pd.concat(frame_list)
frame_list = None
transmission_df = transmission_df.sort_index()

print("Calculate goodput...")
transmission_df["goodput"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
transmission_df["goodput"] = transmission_df["goodput"].apply(
lambda x: ((x * 8) / args.interval) / 10**6
)

# load dataframe an put it into geopandas
df = pd.read_csv(args.gps_file)
df["kmh"] = df["speed (knots)"].apply(lambda x: x * 1.852)
if args.time_offset:
df["datetime"] = pd.to_datetime(df["datetime"]) + pd.Timedelta(minutes=args.time_offset)
else:
df["datetime"] = pd.to_datetime(df["datetime"])
df = df.set_index("datetime")
df.index = pd.to_datetime(df.index)
df = pd.read_csv(args.file)

gdf = gpd.GeoDataFrame(
df,
geometry=gpd.points_from_xy(df["longitude"], df["latitude"]),
crs="EPSG:4326",
)
gdf = pd.merge_asof(
gdf,
transmission_df,
tolerance=pd.Timedelta("10s"),
right_index=True,
left_index=True,
)

# read serial csv
serial_df = pd.read_csv(args.serial_file)
#serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1)
serial_df["datetime"] = pd.to_datetime(serial_df["datetime"])
serial_df = serial_df.set_index("datetime")
serial_df.index = pd.to_datetime(serial_df.index)

gdf = pd.merge_asof(
gdf,
serial_df,
tolerance=pd.Timedelta("1s"),
right_index=True,
left_index=True,
)

# format to needed format and add basemap as background
df_wm = gdf.to_crs(epsg=3857)
#df_wm.to_csv("debug-data.csv")
# ax2 = df_wm.plot(figsize=(10, 10), alpha=0.5, edgecolor='k')
if args.no_plot:
df_wm.to_csv("{}gps_plot.csv".format(args.save))
print("Saved calculations to: {}gps_plot.csv".format(args.save))
exit(0)
gdf["srtt"] = gdf["srtt"].apply(lambda x: x / 10 ** 6)

print("Start plotting...")

df_wm = gdf.to_crs(epsg=3857)
ax2 = df_wm.plot()
ax2 = df_wm.plot(args.column, cmap="hot", legend=args.no_legend, ax=ax2)
# ax2 = df_wm.plot.scatter(x="longitude", y="latitude", c="kmh", cmap="hot")
# zoom 17 is pretty
cx.add_basemap(ax2, source=cx.providers.OpenStreetMap.Mapnik, zoom=15)
cx.add_basemap(ax2, source=cx.providers.OpenStreetMap.Mapnik, zoom=17)

# gdf.plot()
ax2.set_axis_off()

Завантаження…
Відмінити
Зберегти