| @@ -44,125 +44,129 @@ if __name__ == "__main__": | |||
| for csv in pcap_csv_list: | |||
| print("\rProcessing {} out of {} CSVs.\t({}%)\t".format(counter, len(pcap_csv_list), math.floor(counter/len(pcap_csv_list)))) | |||
| transmission_df = pd.read_csv( | |||
| "{}{}".format(args.pcap_csv_folder, csv), | |||
| dtype=dict(is_retranmission=bool, is_dup_ack=bool), | |||
| ) | |||
| transmission_df["datetime"] = pd.to_datetime(transmission_df["datetime"]) - pd.Timedelta(hours=1) | |||
| transmission_df = transmission_df.set_index("datetime") | |||
| transmission_df.index = pd.to_datetime(transmission_df.index) | |||
| transmission_df = transmission_df.sort_index() | |||
| # srtt to [s] | |||
| transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6) | |||
| # key for columns and level for index | |||
| transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum") | |||
| transmission_df["goodput"] = transmission_df["goodput"].apply( | |||
| lambda x: ((x * 8) / args.interval) / 10**6 | |||
| ) | |||
| transmission_df["goodput_rolling"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum() | |||
| transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply( | |||
| lambda x: ((x * 8) / args.interval) / 10 ** 6 | |||
| ) | |||
| # set meta values and remove all not needed columns | |||
| cc_algo = transmission_df["congestion_control"].iloc[0] | |||
| cc_algo = cc_algo.upper() | |||
| transmission_direction = transmission_df["direction"].iloc[0] | |||
| #transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"]) | |||
| # read serial csv | |||
| serial_df = pd.read_csv(args.serial_file) | |||
| serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1) | |||
| serial_df = serial_df.set_index("datetime") | |||
| serial_df.index = pd.to_datetime(serial_df.index) | |||
| serial_df.sort_index() | |||
| transmission_df = pd.merge_asof( | |||
| transmission_df, | |||
| serial_df, | |||
| tolerance=pd.Timedelta("1s"), | |||
| right_index=True, | |||
| left_index=True, | |||
| ) | |||
| # transmission timeline | |||
| scaley = 1.5 | |||
| scalex = 1.0 | |||
| fig, ax = plt.subplots(figsize=[6.4 * scaley, 4.8 * scalex]) | |||
| plt.title("{} with {}".format(transmission_direction, cc_algo)) | |||
| fig.subplots_adjust(right=0.75) | |||
| twin1 = ax.twinx() | |||
| twin2 = ax.twinx() | |||
| twin3 = ax.twinx() | |||
| # Offset the right spine of twin2. The ticks and label have already been | |||
| # placed on the right by twinx above. | |||
| twin2.spines.right.set_position(("axes", 1.1)) | |||
| twin3.spines.right.set_position(("axes", 1.2)) | |||
| # create list fo color indices | |||
| transmission_df["index"] = transmission_df.index | |||
| color_dict = dict() | |||
| color_list = list() | |||
| i = 0 | |||
| for cell_id in transmission_df["cellID"]: | |||
| if cell_id not in color_dict: | |||
| color_dict[cell_id] = i | |||
| i += 1 | |||
| color_list.append(color_dict[cell_id]) | |||
| transmission_df["cell_color"] = color_list | |||
| color_dict = None | |||
| color_list = None | |||
| cmap = matplotlib.cm.get_cmap("Set3") | |||
| unique_cells = transmission_df["cell_color"].unique() | |||
| color_list = cmap.colors * (round(len(unique_cells) / len(cmap.colors)) + 1) | |||
| for c in transmission_df["cell_color"].unique(): | |||
| bounds = transmission_df[["index", "cell_color"]].groupby("cell_color").agg(["min", "max"]).loc[c] | |||
| ax.axvspan(bounds.min(), bounds.max(), alpha=0.3, color=color_list[c]) | |||
| p4, = twin3.plot(transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd") | |||
| p3, = twin2.plot(transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT") | |||
| p1, = ax.plot(transmission_df["goodput_rolling"], color="blue", linestyle="solid", label="goodput") | |||
| p2, = twin1.plot(transmission_df["downlink_cqi"].dropna(), color="magenta", linestyle="dotted", label="CQI") | |||
| ax.set_xlim(transmission_df["index"].min(), transmission_df["index"].max()) | |||
| ax.set_ylim(0, 500) | |||
| twin1.set_ylim(0, 15) | |||
| twin2.set_ylim(0, transmission_df["ack_rtt"].max()) | |||
| twin3.set_ylim(0, transmission_df["snd_cwnd"].max() + 10) | |||
| ax.set_xlabel("arrival time") | |||
| ax.set_ylabel("Goodput [mbps]") | |||
| twin1.set_ylabel("CQI") | |||
| twin2.set_ylabel("sRTT [s]") | |||
| twin3.set_ylabel("cwnd") | |||
| ax.yaxis.label.set_color(p1.get_color()) | |||
| twin1.yaxis.label.set_color(p2.get_color()) | |||
| twin2.yaxis.label.set_color(p3.get_color()) | |||
| twin3.yaxis.label.set_color(p4.get_color()) | |||
| tkw = dict(size=4, width=1.5) | |||
| ax.tick_params(axis='y', colors=p1.get_color(), **tkw) | |||
| twin1.tick_params(axis='y', colors=p2.get_color(), **tkw) | |||
| twin2.tick_params(axis='y', colors=p3.get_color(), **tkw) | |||
| twin3.tick_params(axis='y', colors=p4.get_color(), **tkw) | |||
| ax.tick_params(axis='x', **tkw) | |||
| #ax.legend(handles=[p1, p2, p3]) | |||
| if args.save: | |||
| plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", ""))) | |||
| try: | |||
| transmission_df = pd.read_csv( | |||
| "{}{}".format(args.pcap_csv_folder, csv), | |||
| dtype=dict(is_retranmission=bool, is_dup_ack=bool), | |||
| ) | |||
| transmission_df["datetime"] = pd.to_datetime(transmission_df["datetime"]) - pd.Timedelta(hours=1) | |||
| transmission_df = transmission_df.set_index("datetime") | |||
| transmission_df.index = pd.to_datetime(transmission_df.index) | |||
| transmission_df = transmission_df.sort_index() | |||
| # srtt to [s] | |||
| transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6) | |||
| # key for columns and level for index | |||
| transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum") | |||
| transmission_df["goodput"] = transmission_df["goodput"].apply( | |||
| lambda x: ((x * 8) / args.interval) / 10**6 | |||
| ) | |||
| transmission_df["goodput_rolling"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum() | |||
| transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply( | |||
| lambda x: ((x * 8) / args.interval) / 10 ** 6 | |||
| ) | |||
| # set meta values and remove all not needed columns | |||
| cc_algo = transmission_df["congestion_control"].iloc[0] | |||
| cc_algo = cc_algo.upper() | |||
| transmission_direction = transmission_df["direction"].iloc[0] | |||
| #transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"]) | |||
| # read serial csv | |||
| serial_df = pd.read_csv(args.serial_file) | |||
| serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1) | |||
| serial_df = serial_df.set_index("datetime") | |||
| serial_df.index = pd.to_datetime(serial_df.index) | |||
| serial_df.sort_index() | |||
| transmission_df = pd.merge_asof( | |||
| transmission_df, | |||
| serial_df, | |||
| tolerance=pd.Timedelta("1s"), | |||
| right_index=True, | |||
| left_index=True, | |||
| ) | |||
| # transmission timeline | |||
| scaley = 1.5 | |||
| scalex = 1.0 | |||
| fig, ax = plt.subplots(figsize=[6.4 * scaley, 4.8 * scalex]) | |||
| plt.title("{} with {}".format(transmission_direction, cc_algo)) | |||
| fig.subplots_adjust(right=0.75) | |||
| twin1 = ax.twinx() | |||
| twin2 = ax.twinx() | |||
| twin3 = ax.twinx() | |||
| # Offset the right spine of twin2. The ticks and label have already been | |||
| # placed on the right by twinx above. | |||
| twin2.spines.right.set_position(("axes", 1.1)) | |||
| twin3.spines.right.set_position(("axes", 1.2)) | |||
| # create list fo color indices | |||
| transmission_df["index"] = transmission_df.index | |||
| color_dict = dict() | |||
| color_list = list() | |||
| i = 0 | |||
| for cell_id in transmission_df["cellID"]: | |||
| if cell_id not in color_dict: | |||
| color_dict[cell_id] = i | |||
| i += 1 | |||
| color_list.append(color_dict[cell_id]) | |||
| transmission_df["cell_color"] = color_list | |||
| color_dict = None | |||
| color_list = None | |||
| cmap = matplotlib.cm.get_cmap("Set3") | |||
| unique_cells = transmission_df["cell_color"].unique() | |||
| color_list = cmap.colors * (round(len(unique_cells) / len(cmap.colors)) + 1) | |||
| for c in transmission_df["cell_color"].unique(): | |||
| bounds = transmission_df[["index", "cell_color"]].groupby("cell_color").agg(["min", "max"]).loc[c] | |||
| ax.axvspan(bounds.min(), bounds.max(), alpha=0.3, color=color_list[c]) | |||
| p4, = twin3.plot(transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd") | |||
| p3, = twin2.plot(transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT") | |||
| p1, = ax.plot(transmission_df["goodput_rolling"], color="blue", linestyle="solid", label="goodput") | |||
| p2, = twin1.plot(transmission_df["downlink_cqi"].dropna(), color="magenta", linestyle="dotted", label="CQI") | |||
| ax.set_xlim(transmission_df["index"].min(), transmission_df["index"].max()) | |||
| ax.set_ylim(0, 500) | |||
| twin1.set_ylim(0, 15) | |||
| twin2.set_ylim(0, transmission_df["ack_rtt"].max()) | |||
| twin3.set_ylim(0, transmission_df["snd_cwnd"].max() + 10) | |||
| ax.set_xlabel("arrival time") | |||
| ax.set_ylabel("Goodput [mbps]") | |||
| twin1.set_ylabel("CQI") | |||
| twin2.set_ylabel("sRTT [s]") | |||
| twin3.set_ylabel("cwnd") | |||
| ax.yaxis.label.set_color(p1.get_color()) | |||
| twin1.yaxis.label.set_color(p2.get_color()) | |||
| twin2.yaxis.label.set_color(p3.get_color()) | |||
| twin3.yaxis.label.set_color(p4.get_color()) | |||
| tkw = dict(size=4, width=1.5) | |||
| ax.tick_params(axis='y', colors=p1.get_color(), **tkw) | |||
| twin1.tick_params(axis='y', colors=p2.get_color(), **tkw) | |||
| twin2.tick_params(axis='y', colors=p3.get_color(), **tkw) | |||
| twin3.tick_params(axis='y', colors=p4.get_color(), **tkw) | |||
| ax.tick_params(axis='x', **tkw) | |||
| #ax.legend(handles=[p1, p2, p3]) | |||
| if args.save: | |||
| plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", ""))) | |||
| except Exception as e: | |||
| print("Error processing file: {}".format(csv)) | |||
| print(str(e)) | |||
| counter += 1 | |||
| plt.clf() | |||