Sfoglia il codice sorgente

Adds 'some' error handling.

master
Lukas Prause 2 anni fa
parent
commit
e2625998c6
1 ha cambiato i file con 122 aggiunte e 118 eliminazioni
  1. +122
    -118
      plot_single_transmission_timeline.py

+ 122
- 118
plot_single_transmission_timeline.py Vedi File

for csv in pcap_csv_list: for csv in pcap_csv_list:


print("\rProcessing {} out of {} CSVs.\t({}%)\t".format(counter, len(pcap_csv_list), math.floor(counter/len(pcap_csv_list)))) print("\rProcessing {} out of {} CSVs.\t({}%)\t".format(counter, len(pcap_csv_list), math.floor(counter/len(pcap_csv_list))))
transmission_df = pd.read_csv(
"{}{}".format(args.pcap_csv_folder, csv),
dtype=dict(is_retranmission=bool, is_dup_ack=bool),
)
transmission_df["datetime"] = pd.to_datetime(transmission_df["datetime"]) - pd.Timedelta(hours=1)
transmission_df = transmission_df.set_index("datetime")
transmission_df.index = pd.to_datetime(transmission_df.index)
transmission_df = transmission_df.sort_index()

# srtt to [s]
transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6)

# key for columns and level for index
transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum")
transmission_df["goodput"] = transmission_df["goodput"].apply(
lambda x: ((x * 8) / args.interval) / 10**6
)

transmission_df["goodput_rolling"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
lambda x: ((x * 8) / args.interval) / 10 ** 6
)

# set meta values and remove all not needed columns
cc_algo = transmission_df["congestion_control"].iloc[0]
cc_algo = cc_algo.upper()
transmission_direction = transmission_df["direction"].iloc[0]

#transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"])

# read serial csv
serial_df = pd.read_csv(args.serial_file)
serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1)
serial_df = serial_df.set_index("datetime")
serial_df.index = pd.to_datetime(serial_df.index)
serial_df.sort_index()

transmission_df = pd.merge_asof(
transmission_df,
serial_df,
tolerance=pd.Timedelta("1s"),
right_index=True,
left_index=True,
)

# transmission timeline

scaley = 1.5
scalex = 1.0
fig, ax = plt.subplots(figsize=[6.4 * scaley, 4.8 * scalex])
plt.title("{} with {}".format(transmission_direction, cc_algo))
fig.subplots_adjust(right=0.75)

twin1 = ax.twinx()
twin2 = ax.twinx()
twin3 = ax.twinx()
# Offset the right spine of twin2. The ticks and label have already been
# placed on the right by twinx above.
twin2.spines.right.set_position(("axes", 1.1))
twin3.spines.right.set_position(("axes", 1.2))


# create list fo color indices
transmission_df["index"] = transmission_df.index
color_dict = dict()
color_list = list()
i = 0
for cell_id in transmission_df["cellID"]:
if cell_id not in color_dict:
color_dict[cell_id] = i
i += 1
color_list.append(color_dict[cell_id])

transmission_df["cell_color"] = color_list
color_dict = None
color_list = None

cmap = matplotlib.cm.get_cmap("Set3")
unique_cells = transmission_df["cell_color"].unique()
color_list = cmap.colors * (round(len(unique_cells) / len(cmap.colors)) + 1)

for c in transmission_df["cell_color"].unique():
bounds = transmission_df[["index", "cell_color"]].groupby("cell_color").agg(["min", "max"]).loc[c]
ax.axvspan(bounds.min(), bounds.max(), alpha=0.3, color=color_list[c])

p4, = twin3.plot(transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd")
p3, = twin2.plot(transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT")
p1, = ax.plot(transmission_df["goodput_rolling"], color="blue", linestyle="solid", label="goodput")
p2, = twin1.plot(transmission_df["downlink_cqi"].dropna(), color="magenta", linestyle="dotted", label="CQI")

ax.set_xlim(transmission_df["index"].min(), transmission_df["index"].max())
ax.set_ylim(0, 500)
twin1.set_ylim(0, 15)
twin2.set_ylim(0, transmission_df["ack_rtt"].max())
twin3.set_ylim(0, transmission_df["snd_cwnd"].max() + 10)

ax.set_xlabel("arrival time")
ax.set_ylabel("Goodput [mbps]")
twin1.set_ylabel("CQI")
twin2.set_ylabel("sRTT [s]")
twin3.set_ylabel("cwnd")

ax.yaxis.label.set_color(p1.get_color())
twin1.yaxis.label.set_color(p2.get_color())
twin2.yaxis.label.set_color(p3.get_color())
twin3.yaxis.label.set_color(p4.get_color())

tkw = dict(size=4, width=1.5)
ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
twin1.tick_params(axis='y', colors=p2.get_color(), **tkw)
twin2.tick_params(axis='y', colors=p3.get_color(), **tkw)
twin3.tick_params(axis='y', colors=p4.get_color(), **tkw)
ax.tick_params(axis='x', **tkw)

#ax.legend(handles=[p1, p2, p3])

if args.save:
plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", "")))


try:
transmission_df = pd.read_csv(
"{}{}".format(args.pcap_csv_folder, csv),
dtype=dict(is_retranmission=bool, is_dup_ack=bool),
)
transmission_df["datetime"] = pd.to_datetime(transmission_df["datetime"]) - pd.Timedelta(hours=1)
transmission_df = transmission_df.set_index("datetime")
transmission_df.index = pd.to_datetime(transmission_df.index)
transmission_df = transmission_df.sort_index()

# srtt to [s]
transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6)

# key for columns and level for index
transmission_df["goodput"] = transmission_df["payload_size"].groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))).transform("sum")
transmission_df["goodput"] = transmission_df["goodput"].apply(
lambda x: ((x * 8) / args.interval) / 10**6
)

transmission_df["goodput_rolling"] = transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
lambda x: ((x * 8) / args.interval) / 10 ** 6
)

# set meta values and remove all not needed columns
cc_algo = transmission_df["congestion_control"].iloc[0]
cc_algo = cc_algo.upper()
transmission_direction = transmission_df["direction"].iloc[0]

#transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"])

# read serial csv
serial_df = pd.read_csv(args.serial_file)
serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(hours=1)
serial_df = serial_df.set_index("datetime")
serial_df.index = pd.to_datetime(serial_df.index)
serial_df.sort_index()

transmission_df = pd.merge_asof(
transmission_df,
serial_df,
tolerance=pd.Timedelta("1s"),
right_index=True,
left_index=True,
)

# transmission timeline

scaley = 1.5
scalex = 1.0
fig, ax = plt.subplots(figsize=[6.4 * scaley, 4.8 * scalex])
plt.title("{} with {}".format(transmission_direction, cc_algo))
fig.subplots_adjust(right=0.75)

twin1 = ax.twinx()
twin2 = ax.twinx()
twin3 = ax.twinx()
# Offset the right spine of twin2. The ticks and label have already been
# placed on the right by twinx above.
twin2.spines.right.set_position(("axes", 1.1))
twin3.spines.right.set_position(("axes", 1.2))


# create list fo color indices
transmission_df["index"] = transmission_df.index
color_dict = dict()
color_list = list()
i = 0
for cell_id in transmission_df["cellID"]:
if cell_id not in color_dict:
color_dict[cell_id] = i
i += 1
color_list.append(color_dict[cell_id])

transmission_df["cell_color"] = color_list
color_dict = None
color_list = None

cmap = matplotlib.cm.get_cmap("Set3")
unique_cells = transmission_df["cell_color"].unique()
color_list = cmap.colors * (round(len(unique_cells) / len(cmap.colors)) + 1)

for c in transmission_df["cell_color"].unique():
bounds = transmission_df[["index", "cell_color"]].groupby("cell_color").agg(["min", "max"]).loc[c]
ax.axvspan(bounds.min(), bounds.max(), alpha=0.3, color=color_list[c])

p4, = twin3.plot(transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd")
p3, = twin2.plot(transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT")
p1, = ax.plot(transmission_df["goodput_rolling"], color="blue", linestyle="solid", label="goodput")
p2, = twin1.plot(transmission_df["downlink_cqi"].dropna(), color="magenta", linestyle="dotted", label="CQI")

ax.set_xlim(transmission_df["index"].min(), transmission_df["index"].max())
ax.set_ylim(0, 500)
twin1.set_ylim(0, 15)
twin2.set_ylim(0, transmission_df["ack_rtt"].max())
twin3.set_ylim(0, transmission_df["snd_cwnd"].max() + 10)

ax.set_xlabel("arrival time")
ax.set_ylabel("Goodput [mbps]")
twin1.set_ylabel("CQI")
twin2.set_ylabel("sRTT [s]")
twin3.set_ylabel("cwnd")

ax.yaxis.label.set_color(p1.get_color())
twin1.yaxis.label.set_color(p2.get_color())
twin2.yaxis.label.set_color(p3.get_color())
twin3.yaxis.label.set_color(p4.get_color())

tkw = dict(size=4, width=1.5)
ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
twin1.tick_params(axis='y', colors=p2.get_color(), **tkw)
twin2.tick_params(axis='y', colors=p3.get_color(), **tkw)
twin3.tick_params(axis='y', colors=p4.get_color(), **tkw)
ax.tick_params(axis='x', **tkw)

#ax.legend(handles=[p1, p2, p3])

if args.save:
plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", "")))
except Exception as e:
print("Error processing file: {}".format(csv))
print(str(e))
counter += 1 counter += 1


plt.clf() plt.clf()

Loading…
Annulla
Salva