您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

322 行
11KB

  1. #!/usr/bin/env python3
  2. import math
  3. import multiprocessing
  4. import os
  5. from argparse import ArgumentParser
  6. import matplotlib
  7. import numpy as np
  8. import pandas as pd
  9. import matplotlib.pyplot as plt
  10. # Using seaborn's style
  11. # plt.style.use('seaborn')
  12. tex_fonts = {
  13. "pgf.texsystem": "lualatex",
  14. # "legend.fontsize": "x-large",
  15. # "figure.figsize": (15, 5),
  16. "axes.labelsize": 15, # "small",
  17. # "axes.titlesize": "x-large",
  18. "xtick.labelsize": 15, # "small",
  19. "ytick.labelsize": 15, # "small",
  20. "legend.fontsize": 15,
  21. "axes.formatter.use_mathtext": True,
  22. "mathtext.fontset": "dejavusans",
  23. }
  24. # plt.rcParams.update(tex_fonts)
  25. def convert_cellid(value):
  26. if isinstance(value, str):
  27. try:
  28. r = int(value.split(" ")[-1].replace("(", "").replace(")", ""))
  29. return r
  30. except Exception as e:
  31. return -1
  32. else:
  33. return int(-1)
  34. if __name__ == "__main__":
  35. parser = ArgumentParser()
  36. parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
  37. parser.add_argument(
  38. "-p", "--pcap_csv_folder", required=True, help="PCAP csv folder."
  39. )
  40. parser.add_argument("--save", required=True, help="Location to save pdf file.")
  41. parser.add_argument(
  42. "-i",
  43. "--interval",
  44. default=10,
  45. type=int,
  46. help="Time interval for rolling window.",
  47. )
  48. args = parser.parse_args()
  49. pcap_csv_list = list()
  50. for filename in os.listdir(args.pcap_csv_folder):
  51. if filename.endswith(".csv") and "tcp" in filename:
  52. pcap_csv_list.append(filename)
  53. counter = 1
  54. if len(pcap_csv_list) == 0:
  55. print("No CSV files found.")
  56. pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", "")))
  57. for csv in pcap_csv_list:
  58. print(
  59. "\rProcessing {} out of {} CSVs.\t({}%)\t".format(
  60. counter, len(pcap_csv_list), math.floor(counter / len(pcap_csv_list))
  61. )
  62. )
  63. # try:
  64. transmission_df = pd.read_csv(
  65. "{}{}".format(args.pcap_csv_folder, csv),
  66. dtype=dict(is_retranmission=bool, is_dup_ack=bool),
  67. )
  68. transmission_df["datetime"] = pd.to_datetime(
  69. transmission_df["datetime"]
  70. ) - pd.Timedelta(hours=1)
  71. transmission_df = transmission_df.set_index("datetime")
  72. transmission_df.index = pd.to_datetime(transmission_df.index)
  73. transmission_df = transmission_df.sort_index()
  74. # srtt to [s]
  75. transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10**6)
  76. # key for columns and level for index
  77. transmission_df["goodput"] = (
  78. transmission_df["payload_size"]
  79. .groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval)))
  80. .transform("sum")
  81. )
  82. transmission_df["goodput"] = transmission_df["goodput"].apply(
  83. lambda x: ((x * 8) / args.interval) / 10**6
  84. )
  85. transmission_df["goodput_rolling"] = (
  86. transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
  87. )
  88. transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
  89. lambda x: ((x * 8) / args.interval) / 10**6
  90. )
  91. # set meta values and remove all not needed columns
  92. cc_algo = transmission_df["congestion_control"].iloc[0]
  93. cc_algo = cc_algo.upper()
  94. transmission_direction = transmission_df["direction"].iloc[0]
  95. # transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"])
  96. # read serial csv
  97. serial_df = pd.read_csv(
  98. args.serial_file, converters={"Cell_ID": convert_cellid}
  99. )
  100. serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(
  101. hours=1
  102. )
  103. serial_df = serial_df.set_index("datetime")
  104. serial_df.index = pd.to_datetime(serial_df.index)
  105. serial_df.sort_index()
  106. # print(serial_df["Cell_ID"])
  107. # serial_df["Cell_ID"] = serial_df["Cell_ID"].apply(
  108. # lambda x: int(x.split(" ")[-1].replace("(", "").replace(")", "")))
  109. transmission_df = pd.merge_asof(
  110. transmission_df,
  111. serial_df,
  112. tolerance=pd.Timedelta("1s"),
  113. right_index=True,
  114. left_index=True,
  115. )
  116. transmission_df.index = transmission_df["arrival_time"]
  117. # replace 0 in RSRQ with Nan
  118. transmission_df["NR5G_RSRQ_(dB)"] = transmission_df["NR5G_RSRQ_(dB)"].replace(
  119. 0, np.NaN
  120. )
  121. transmission_df["RSRQ_(dB)"] = transmission_df["RSRQ_(dB)"].replace(0, np.NaN)
  122. # filter active state
  123. for i in range(1, 5):
  124. transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
  125. "LTE_SCC{}_bw".format(i)
  126. ]
  127. mask = transmission_df["LTE_SCC{}_state".format(i)].isin(["ACTIVE"])
  128. transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
  129. "LTE_SCC{}_effective_bw".format(i)
  130. ].where(mask, other=0)
  131. # filter if sc is usesd for uplink
  132. for i in range(1, 5):
  133. mask = transmission_df["LTE_SCC{}_UL_Configured".format(i)].isin([False])
  134. transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
  135. "LTE_SCC{}_effective_bw".format(i)
  136. ].where(mask, other=0)
  137. # sum all effective bandwidth for 5G and 4G
  138. transmission_df["SCC1_NR5G_effective_bw"] = transmission_df[
  139. "SCC1_NR5G_bw"
  140. ].fillna(0)
  141. transmission_df["effective_bw_sum"] = (
  142. transmission_df["SCC1_NR5G_effective_bw"]
  143. + transmission_df["LTE_SCC1_effective_bw"]
  144. + transmission_df["LTE_SCC2_effective_bw"]
  145. + transmission_df["LTE_SCC3_effective_bw"]
  146. + transmission_df["LTE_SCC4_effective_bw"]
  147. + transmission_df["LTE_bw"]
  148. )
  149. transmission_df["lte_effective_bw_sum"] = (
  150. transmission_df["LTE_SCC1_effective_bw"]
  151. + transmission_df["LTE_SCC2_effective_bw"]
  152. + transmission_df["LTE_SCC3_effective_bw"]
  153. + transmission_df["LTE_SCC4_effective_bw"]
  154. + transmission_df["LTE_bw"])
  155. transmission_df["nr_effective_bw_sum"] = transmission_df["SCC1_NR5G_effective_bw"]
  156. # transmission timeline
  157. scaley = 1.5
  158. scalex = 1.0
  159. plt.title("{} with {}".format(transmission_direction, cc_algo))
  160. fig, ax = plt.subplots(2, 1, figsize=[6.4 * scaley, 4.8 * scalex])
  161. fig.subplots_adjust(right=0.75)
  162. fig.suptitle("{} with {}".format(transmission_direction, cc_algo))
  163. ax0 = ax[0]
  164. ax1 = ax0.twinx()
  165. ax2 = ax0.twinx()
  166. # ax2.spines.right.set_position(("axes", 1.22))
  167. ax00 = ax[1]
  168. ax01 = ax00.twinx()
  169. ax02 = ax00.twinx()
  170. # Plot vertical lines
  171. first = True
  172. lte_handovers = transmission_df["Cell_ID"].dropna().diff()
  173. for index, value in lte_handovers.items():
  174. if value > 0:
  175. if first:
  176. ax00.axvline(
  177. index, ymin=0, ymax=1, color="skyblue", label="4G Handover"
  178. )
  179. first = False
  180. else:
  181. ax00.axvline(index, ymin=0, ymax=1, color="skyblue")
  182. first = True
  183. nr_handovers = (
  184. transmission_df["NR5G_Cell_ID"].replace(0, np.NaN).dropna().diff()
  185. )
  186. for index, value in nr_handovers.items():
  187. if value > 0:
  188. if first:
  189. ax00.axvline(
  190. index, ymin=0, ymax=1, color="greenyellow", label="5G Handover"
  191. )
  192. first = False
  193. else:
  194. ax00.axvline(index, ymin=0, ymax=1, color="greenyellow")
  195. ax0.plot(
  196. transmission_df["snd_cwnd"].dropna(),
  197. color="lime",
  198. linestyle="dashed",
  199. label="cwnd",
  200. )
  201. ax1.plot(
  202. transmission_df["srtt"].dropna(),
  203. color="red",
  204. linestyle="dashdot",
  205. label="sRTT",
  206. )
  207. ax2.plot(
  208. transmission_df["goodput_rolling"],
  209. color="blue",
  210. linestyle="solid",
  211. label="goodput",
  212. )
  213. # ax2.plot(transmission_df["goodput"], color="blue", linestyle="solid", label="goodput")
  214. ax01.plot(
  215. transmission_df["effective_bw_sum"].dropna(),
  216. color="peru",
  217. linestyle="solid",
  218. label="bandwidth",
  219. )
  220. ax01.plot(
  221. transmission_df["lte_effective_bw_sum"].dropna(),
  222. color="lightsteelblue",
  223. linestyle="solid",
  224. label="4G bandwidth",
  225. alpha=0.5,
  226. )
  227. ax01.plot(
  228. transmission_df["nr_effective_bw_sum"].dropna(),
  229. color="cornflowerblue",
  230. linestyle="solid",
  231. label="5G bandwidth",
  232. alpha=0.5,
  233. )
  234. # ax01.stackplot(transmission_df["arrival_time"].to_list(),
  235. # [transmission_df["lte_bw_sum"].to_list(), transmission_df["nr_bw_sum"].to_list()],
  236. # colors=["lightsteelblue", "cornflowerblue"],
  237. # labels=["4G bandwidth", "5G bandwidth"]
  238. # )
  239. ax02.plot(
  240. transmission_df["RSRQ_(dB)"].dropna(),
  241. color="purple",
  242. linestyle="dotted",
  243. label="LTE RSRQ",
  244. )
  245. ax00.plot(
  246. transmission_df["NR5G_RSRQ_(dB)"].dropna(),
  247. color="magenta",
  248. linestyle="dotted",
  249. label="NR RSRQ",
  250. )
  251. ax2.spines.right.set_position(("axes", 1.1))
  252. ax02.spines.right.set_position(("axes", 1.1))
  253. ax0.set_ylim(0, 5000)
  254. ax1.set_ylim(0, 0.3)
  255. ax2.set_ylim(0, 500)
  256. ax00.set_ylim(-25, 0)
  257. ax01.set_ylim(0, 250)
  258. # second dB axis
  259. ax02.set_ylim(-25, 0)
  260. ax02.set_axis_off()
  261. ax00.set_xlabel("arrival time [s]")
  262. ax2.set_ylabel("Goodput [mbps]")
  263. ax00.set_ylabel("LTE/NR RSRQ [dB]")
  264. # ax02.set_ylabel("LTE RSRQ [dB]")
  265. ax1.set_ylabel("sRTT [s]")
  266. ax0.set_ylabel("cwnd")
  267. ax01.set_ylabel("Bandwidth [MHz]")
  268. fig.legend(loc="lower right")
  269. plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", "")))
  270. # except Exception as e:
  271. # print("Error processing file: {}".format(csv))
  272. # print(str(e))
  273. counter += 1
  274. plt.close(fig)
  275. plt.clf()