Parcourir la source

Adds new script.

master
Lukas Prause il y a 2 ans
Parent
révision
2e4ff28fc2
1 fichiers modifiés avec 197 ajouts et 0 suppressions
  1. +197
    -0
      calc_bandwidth_goodput_csv.py

+ 197
- 0
calc_bandwidth_goodput_csv.py Voir le fichier

@@ -0,0 +1,197 @@
#!/usr/bin/env python3
import math
import multiprocessing
import os
from argparse import ArgumentParser

import matplotlib
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import seaborn as sns

sns.set()
#sns.set(font_scale=1.5)

tex_fonts = {
"pgf.texsystem": "lualatex",
# "legend.fontsize": "x-large",
# "figure.figsize": (15, 5),
"axes.labelsize": 15, # "small",
# "axes.titlesize": "x-large",
"xtick.labelsize": 15, # "small",
"ytick.labelsize": 15, # "small",
"legend.fontsize": 15,
"axes.formatter.use_mathtext": True,
"mathtext.fontset": "dejavusans",
}


# plt.rcParams.update(tex_fonts)


def convert_cellid(value):
if isinstance(value, str):
try:
r = int(value.split(" ")[-1].replace("(", "").replace(")", ""))
return r
except Exception as e:
return -1
else:
return int(-1)


if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
parser.add_argument(
"-p", "--pcap_csv_folder", required=True, help="PCAP csv folder."
)
parser.add_argument("--save", required=True, help="Location to save pdf file.")
parser.add_argument(
"-i",
"--interval",
default=10,
type=int,
help="Time interval for rolling window.",
)

args = parser.parse_args()

pcap_csv_list = list()
for filename in os.listdir(args.pcap_csv_folder):
if filename.endswith(".csv") and "tcp" in filename:
pcap_csv_list.append(filename)

counter = 1
if len(pcap_csv_list) == 0:
print("No CSV files found.")

pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", "")))

concat_frame = None

for csv in pcap_csv_list:
print(
"\rProcessing {} out of {} CSVs.\t({}%)\t".format(
counter, len(pcap_csv_list), math.floor(counter / len(pcap_csv_list))
)
)

# try:
transmission_df = pd.read_csv(
"{}{}".format(args.pcap_csv_folder, csv),
dtype=dict(is_retranmission=bool, is_dup_ack=bool),
)

transmission_df["datetime"] = pd.to_datetime(
transmission_df["datetime"]
) - pd.Timedelta(hours=1)
transmission_df = transmission_df.set_index("datetime")
transmission_df.index = pd.to_datetime(transmission_df.index)
transmission_df = transmission_df.sort_index()

# srtt to [s]
transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10 ** 6)

# key for columns and level for index
transmission_df["goodput"] = (
transmission_df["payload_size"]
.groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval)))
.transform("sum")
)
transmission_df["goodput"] = transmission_df["goodput"].apply(
lambda x: ((x * 8) / args.interval) / 10 ** 6
)

transmission_df["goodput_rolling"] = (
transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum()
)
transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply(
lambda x: ((x * 8) / args.interval) / 10 ** 6
)

# set meta values and remove all not needed columns
cc_algo = transmission_df["congestion_control"].iloc[0]
cc_algo = cc_algo.upper()
transmission_direction = transmission_df["direction"].iloc[0]

# transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"])

# read serial csv
serial_df = pd.read_csv(
args.serial_file, converters={"Cell_ID": convert_cellid}
)
serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta(
hours=1
)
serial_df = serial_df.set_index("datetime")
serial_df.index = pd.to_datetime(serial_df.index)
serial_df.sort_index()

# print(serial_df["Cell_ID"])

# serial_df["Cell_ID"] = serial_df["Cell_ID"].apply(
# lambda x: int(x.split(" ")[-1].replace("(", "").replace(")", "")))

transmission_df = pd.merge_asof(
transmission_df,
serial_df,
tolerance=pd.Timedelta("1s"),
right_index=True,
left_index=True,
)

transmission_df.index = transmission_df["arrival_time"]

# replace 0 in RSRQ with Nan
transmission_df["NR5G_RSRQ_(dB)"] = transmission_df["NR5G_RSRQ_(dB)"].replace(
0, np.NaN
)
transmission_df["RSRQ_(dB)"] = transmission_df["RSRQ_(dB)"].replace(0, np.NaN)

# filter active state
for i in range(1, 5):
transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
"LTE_SCC{}_bw".format(i)
]

mask = transmission_df["LTE_SCC{}_state".format(i)].isin(["ACTIVE"])
transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
"LTE_SCC{}_effective_bw".format(i)
].where(mask, other=0)

# filter if sc is usesd for uplink
for i in range(1, 5):
mask = transmission_df["LTE_SCC{}_UL_Configured".format(i)].isin([False])
transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[
"LTE_SCC{}_effective_bw".format(i)
].where(mask, other=0)

# sum all effective bandwidth for 5G and 4G
transmission_df["SCC1_NR5G_effective_bw"] = transmission_df[
"SCC1_NR5G_bw"
].fillna(0)

transmission_df["lte_effective_bw_sum"] = (
transmission_df["LTE_SCC1_effective_bw"].fillna(0)
+ transmission_df["LTE_SCC2_effective_bw"].fillna(0)
+ transmission_df["LTE_SCC3_effective_bw"].fillna(0)
+ transmission_df["LTE_SCC4_effective_bw"].fillna(0)
+ transmission_df["LTE_bw"].fillna(0))
transmission_df["nr_effective_bw_sum"] = transmission_df["SCC1_NR5G_effective_bw"]

transmission_df["effective_bw_sum"] = transmission_df["nr_effective_bw_sum"] + transmission_df[
"lte_effective_bw_sum"]

transmission_df = transmission_df.filter(["goodput", "effective_bw_sum"])

if concat_frame is None:
concat_frame = transmission_df
else:
concat_frame = pd.concat([concat_frame, transmission_df])

concat_frame.to_csv("_concat_bw_gp.csv".format(args.save))



Chargement…
Annuler
Enregistrer