| @@ -0,0 +1,197 @@ | |||
| #!/usr/bin/env python3 | |||
| import math | |||
| import multiprocessing | |||
| import os | |||
| from argparse import ArgumentParser | |||
| import matplotlib | |||
| import numpy as np | |||
| import pandas as pd | |||
| import matplotlib.pyplot as plt | |||
| import seaborn as sns | |||
| sns.set() | |||
| #sns.set(font_scale=1.5) | |||
| tex_fonts = { | |||
| "pgf.texsystem": "lualatex", | |||
| # "legend.fontsize": "x-large", | |||
| # "figure.figsize": (15, 5), | |||
| "axes.labelsize": 15, # "small", | |||
| # "axes.titlesize": "x-large", | |||
| "xtick.labelsize": 15, # "small", | |||
| "ytick.labelsize": 15, # "small", | |||
| "legend.fontsize": 15, | |||
| "axes.formatter.use_mathtext": True, | |||
| "mathtext.fontset": "dejavusans", | |||
| } | |||
| # plt.rcParams.update(tex_fonts) | |||
| def convert_cellid(value): | |||
| if isinstance(value, str): | |||
| try: | |||
| r = int(value.split(" ")[-1].replace("(", "").replace(")", "")) | |||
| return r | |||
| except Exception as e: | |||
| return -1 | |||
| else: | |||
| return int(-1) | |||
| if __name__ == "__main__": | |||
| parser = ArgumentParser() | |||
| parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.") | |||
| parser.add_argument( | |||
| "-p", "--pcap_csv_folder", required=True, help="PCAP csv folder." | |||
| ) | |||
| parser.add_argument("--save", required=True, help="Location to save pdf file.") | |||
| parser.add_argument( | |||
| "-i", | |||
| "--interval", | |||
| default=10, | |||
| type=int, | |||
| help="Time interval for rolling window.", | |||
| ) | |||
| args = parser.parse_args() | |||
| pcap_csv_list = list() | |||
| for filename in os.listdir(args.pcap_csv_folder): | |||
| if filename.endswith(".csv") and "tcp" in filename: | |||
| pcap_csv_list.append(filename) | |||
| counter = 1 | |||
| if len(pcap_csv_list) == 0: | |||
| print("No CSV files found.") | |||
| pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", ""))) | |||
| concat_frame = None | |||
| for csv in pcap_csv_list: | |||
| print( | |||
| "\rProcessing {} out of {} CSVs.\t({}%)\t".format( | |||
| counter, len(pcap_csv_list), math.floor(counter / len(pcap_csv_list)) | |||
| ) | |||
| ) | |||
| # try: | |||
| transmission_df = pd.read_csv( | |||
| "{}{}".format(args.pcap_csv_folder, csv), | |||
| dtype=dict(is_retranmission=bool, is_dup_ack=bool), | |||
| ) | |||
| transmission_df["datetime"] = pd.to_datetime( | |||
| transmission_df["datetime"] | |||
| ) - pd.Timedelta(hours=1) | |||
| transmission_df = transmission_df.set_index("datetime") | |||
| transmission_df.index = pd.to_datetime(transmission_df.index) | |||
| transmission_df = transmission_df.sort_index() | |||
| # srtt to [s] | |||
| transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10 ** 6) | |||
| # key for columns and level for index | |||
| transmission_df["goodput"] = ( | |||
| transmission_df["payload_size"] | |||
| .groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))) | |||
| .transform("sum") | |||
| ) | |||
| transmission_df["goodput"] = transmission_df["goodput"].apply( | |||
| lambda x: ((x * 8) / args.interval) / 10 ** 6 | |||
| ) | |||
| transmission_df["goodput_rolling"] = ( | |||
| transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum() | |||
| ) | |||
| transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply( | |||
| lambda x: ((x * 8) / args.interval) / 10 ** 6 | |||
| ) | |||
| # set meta values and remove all not needed columns | |||
| cc_algo = transmission_df["congestion_control"].iloc[0] | |||
| cc_algo = cc_algo.upper() | |||
| transmission_direction = transmission_df["direction"].iloc[0] | |||
| # transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"]) | |||
| # read serial csv | |||
| serial_df = pd.read_csv( | |||
| args.serial_file, converters={"Cell_ID": convert_cellid} | |||
| ) | |||
| serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta( | |||
| hours=1 | |||
| ) | |||
| serial_df = serial_df.set_index("datetime") | |||
| serial_df.index = pd.to_datetime(serial_df.index) | |||
| serial_df.sort_index() | |||
| # print(serial_df["Cell_ID"]) | |||
| # serial_df["Cell_ID"] = serial_df["Cell_ID"].apply( | |||
| # lambda x: int(x.split(" ")[-1].replace("(", "").replace(")", ""))) | |||
| transmission_df = pd.merge_asof( | |||
| transmission_df, | |||
| serial_df, | |||
| tolerance=pd.Timedelta("1s"), | |||
| right_index=True, | |||
| left_index=True, | |||
| ) | |||
| transmission_df.index = transmission_df["arrival_time"] | |||
| # replace 0 in RSRQ with Nan | |||
| transmission_df["NR5G_RSRQ_(dB)"] = transmission_df["NR5G_RSRQ_(dB)"].replace( | |||
| 0, np.NaN | |||
| ) | |||
| transmission_df["RSRQ_(dB)"] = transmission_df["RSRQ_(dB)"].replace(0, np.NaN) | |||
| # filter active state | |||
| for i in range(1, 5): | |||
| transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[ | |||
| "LTE_SCC{}_bw".format(i) | |||
| ] | |||
| mask = transmission_df["LTE_SCC{}_state".format(i)].isin(["ACTIVE"]) | |||
| transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[ | |||
| "LTE_SCC{}_effective_bw".format(i) | |||
| ].where(mask, other=0) | |||
| # filter if sc is usesd for uplink | |||
| for i in range(1, 5): | |||
| mask = transmission_df["LTE_SCC{}_UL_Configured".format(i)].isin([False]) | |||
| transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[ | |||
| "LTE_SCC{}_effective_bw".format(i) | |||
| ].where(mask, other=0) | |||
| # sum all effective bandwidth for 5G and 4G | |||
| transmission_df["SCC1_NR5G_effective_bw"] = transmission_df[ | |||
| "SCC1_NR5G_bw" | |||
| ].fillna(0) | |||
| transmission_df["lte_effective_bw_sum"] = ( | |||
| transmission_df["LTE_SCC1_effective_bw"].fillna(0) | |||
| + transmission_df["LTE_SCC2_effective_bw"].fillna(0) | |||
| + transmission_df["LTE_SCC3_effective_bw"].fillna(0) | |||
| + transmission_df["LTE_SCC4_effective_bw"].fillna(0) | |||
| + transmission_df["LTE_bw"].fillna(0)) | |||
| transmission_df["nr_effective_bw_sum"] = transmission_df["SCC1_NR5G_effective_bw"] | |||
| transmission_df["effective_bw_sum"] = transmission_df["nr_effective_bw_sum"] + transmission_df[ | |||
| "lte_effective_bw_sum"] | |||
| transmission_df = transmission_df.filter(["goodput", "effective_bw_sum"]) | |||
| if concat_frame is None: | |||
| concat_frame = transmission_df | |||
| else: | |||
| concat_frame = pd.concat([concat_frame, transmission_df]) | |||
| concat_frame.to_csv("_concat_bw_gp.csv".format(args.save)) | |||