| #!/usr/bin/env python3 | |||||
| import math | |||||
| import multiprocessing | |||||
| import os | |||||
| from argparse import ArgumentParser | |||||
| import matplotlib | |||||
| import numpy as np | |||||
| import pandas as pd | |||||
| import matplotlib.pyplot as plt | |||||
| import seaborn as sns | |||||
| sns.set() | |||||
| #sns.set(font_scale=1.5) | |||||
| tex_fonts = { | |||||
| "pgf.texsystem": "lualatex", | |||||
| # "legend.fontsize": "x-large", | |||||
| # "figure.figsize": (15, 5), | |||||
| "axes.labelsize": 15, # "small", | |||||
| # "axes.titlesize": "x-large", | |||||
| "xtick.labelsize": 15, # "small", | |||||
| "ytick.labelsize": 15, # "small", | |||||
| "legend.fontsize": 15, | |||||
| "axes.formatter.use_mathtext": True, | |||||
| "mathtext.fontset": "dejavusans", | |||||
| } | |||||
| # plt.rcParams.update(tex_fonts) | |||||
| def convert_cellid(value): | |||||
| if isinstance(value, str): | |||||
| try: | |||||
| r = int(value.split(" ")[-1].replace("(", "").replace(")", "")) | |||||
| return r | |||||
| except Exception as e: | |||||
| return -1 | |||||
| else: | |||||
| return int(-1) | |||||
| if __name__ == "__main__": | |||||
| parser = ArgumentParser() | |||||
| parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.") | |||||
| parser.add_argument( | |||||
| "-p", "--pcap_csv_folder", required=True, help="PCAP csv folder." | |||||
| ) | |||||
| parser.add_argument("--save", required=True, help="Location to save pdf file.") | |||||
| parser.add_argument( | |||||
| "-i", | |||||
| "--interval", | |||||
| default=10, | |||||
| type=int, | |||||
| help="Time interval for rolling window.", | |||||
| ) | |||||
| args = parser.parse_args() | |||||
| pcap_csv_list = list() | |||||
| for filename in os.listdir(args.pcap_csv_folder): | |||||
| if filename.endswith(".csv") and "tcp" in filename: | |||||
| pcap_csv_list.append(filename) | |||||
| counter = 1 | |||||
| if len(pcap_csv_list) == 0: | |||||
| print("No CSV files found.") | |||||
| pcap_csv_list.sort(key=lambda x: int(x.split("_")[-1].replace(".csv", ""))) | |||||
| concat_frame = None | |||||
| for csv in pcap_csv_list: | |||||
| print( | |||||
| "\rProcessing {} out of {} CSVs.\t({}%)\t".format( | |||||
| counter, len(pcap_csv_list), math.floor(counter / len(pcap_csv_list)) | |||||
| ) | |||||
| ) | |||||
| # try: | |||||
| transmission_df = pd.read_csv( | |||||
| "{}{}".format(args.pcap_csv_folder, csv), | |||||
| dtype=dict(is_retranmission=bool, is_dup_ack=bool), | |||||
| ) | |||||
| transmission_df["datetime"] = pd.to_datetime( | |||||
| transmission_df["datetime"] | |||||
| ) - pd.Timedelta(hours=1) | |||||
| transmission_df = transmission_df.set_index("datetime") | |||||
| transmission_df.index = pd.to_datetime(transmission_df.index) | |||||
| transmission_df = transmission_df.sort_index() | |||||
| # srtt to [s] | |||||
| transmission_df["srtt"] = transmission_df["srtt"].apply(lambda x: x / 10 ** 6) | |||||
| # key for columns and level for index | |||||
| transmission_df["goodput"] = ( | |||||
| transmission_df["payload_size"] | |||||
| .groupby(pd.Grouper(level="datetime", freq="{}s".format(args.interval))) | |||||
| .transform("sum") | |||||
| ) | |||||
| transmission_df["goodput"] = transmission_df["goodput"].apply( | |||||
| lambda x: ((x * 8) / args.interval) / 10 ** 6 | |||||
| ) | |||||
| transmission_df["goodput_rolling"] = ( | |||||
| transmission_df["payload_size"].rolling("{}s".format(args.interval)).sum() | |||||
| ) | |||||
| transmission_df["goodput_rolling"] = transmission_df["goodput_rolling"].apply( | |||||
| lambda x: ((x * 8) / args.interval) / 10 ** 6 | |||||
| ) | |||||
| # set meta values and remove all not needed columns | |||||
| cc_algo = transmission_df["congestion_control"].iloc[0] | |||||
| cc_algo = cc_algo.upper() | |||||
| transmission_direction = transmission_df["direction"].iloc[0] | |||||
| # transmission_df = transmission_df.filter(["goodput", "datetime", "ack_rtt", "goodput_rolling", "snd_cwnd"]) | |||||
| # read serial csv | |||||
| serial_df = pd.read_csv( | |||||
| args.serial_file, converters={"Cell_ID": convert_cellid} | |||||
| ) | |||||
| serial_df["datetime"] = pd.to_datetime(serial_df["datetime"]) - pd.Timedelta( | |||||
| hours=1 | |||||
| ) | |||||
| serial_df = serial_df.set_index("datetime") | |||||
| serial_df.index = pd.to_datetime(serial_df.index) | |||||
| serial_df.sort_index() | |||||
| # print(serial_df["Cell_ID"]) | |||||
| # serial_df["Cell_ID"] = serial_df["Cell_ID"].apply( | |||||
| # lambda x: int(x.split(" ")[-1].replace("(", "").replace(")", ""))) | |||||
| transmission_df = pd.merge_asof( | |||||
| transmission_df, | |||||
| serial_df, | |||||
| tolerance=pd.Timedelta("1s"), | |||||
| right_index=True, | |||||
| left_index=True, | |||||
| ) | |||||
| transmission_df.index = transmission_df["arrival_time"] | |||||
| # replace 0 in RSRQ with Nan | |||||
| transmission_df["NR5G_RSRQ_(dB)"] = transmission_df["NR5G_RSRQ_(dB)"].replace( | |||||
| 0, np.NaN | |||||
| ) | |||||
| transmission_df["RSRQ_(dB)"] = transmission_df["RSRQ_(dB)"].replace(0, np.NaN) | |||||
| # filter active state | |||||
| for i in range(1, 5): | |||||
| transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[ | |||||
| "LTE_SCC{}_bw".format(i) | |||||
| ] | |||||
| mask = transmission_df["LTE_SCC{}_state".format(i)].isin(["ACTIVE"]) | |||||
| transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[ | |||||
| "LTE_SCC{}_effective_bw".format(i) | |||||
| ].where(mask, other=0) | |||||
| # filter if sc is usesd for uplink | |||||
| for i in range(1, 5): | |||||
| mask = transmission_df["LTE_SCC{}_UL_Configured".format(i)].isin([False]) | |||||
| transmission_df["LTE_SCC{}_effective_bw".format(i)] = transmission_df[ | |||||
| "LTE_SCC{}_effective_bw".format(i) | |||||
| ].where(mask, other=0) | |||||
| # sum all effective bandwidth for 5G and 4G | |||||
| transmission_df["SCC1_NR5G_effective_bw"] = transmission_df[ | |||||
| "SCC1_NR5G_bw" | |||||
| ].fillna(0) | |||||
| transmission_df["lte_effective_bw_sum"] = ( | |||||
| transmission_df["LTE_SCC1_effective_bw"].fillna(0) | |||||
| + transmission_df["LTE_SCC2_effective_bw"].fillna(0) | |||||
| + transmission_df["LTE_SCC3_effective_bw"].fillna(0) | |||||
| + transmission_df["LTE_SCC4_effective_bw"].fillna(0) | |||||
| + transmission_df["LTE_bw"].fillna(0)) | |||||
| transmission_df["nr_effective_bw_sum"] = transmission_df["SCC1_NR5G_effective_bw"] | |||||
| transmission_df["effective_bw_sum"] = transmission_df["nr_effective_bw_sum"] + transmission_df[ | |||||
| "lte_effective_bw_sum"] | |||||
| transmission_df = transmission_df.filter(["goodput", "effective_bw_sum"]) | |||||
| if concat_frame is None: | |||||
| concat_frame = transmission_df | |||||
| else: | |||||
| concat_frame = pd.concat([concat_frame, transmission_df]) | |||||
| concat_frame.to_csv("_concat_bw_gp.csv".format(args.save)) | |||||