Selaa lähdekoodia

Pls fix.

master
Lukas Prause 2 vuotta sitten
vanhempi
commit
c463195a25
1 muutettua tiedostoa jossa 39 lisäystä ja 58 poistoa
  1. +39
    -58
      plot_single_transmission.py

+ 39
- 58
plot_single_transmission.py Näytä tiedosto

@@ -13,7 +13,7 @@ if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.")
parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.")
parser.add_argument("--save", default=None, help="Location to save pdf file.")
parser.add_argument("--save", required=True, help="Location to save pdf file.")
parser.add_argument(
"-i",
"--interval",
@@ -23,12 +23,7 @@ if __name__ == "__main__":
)

args = parser.parse_args()
manager = multiprocessing.Manager()
n = manager.Value("i", 0)
frame_list = manager.list()
jobs = []

# load all pcap csv into one dataframe
pcap_csv_list = list()
for filename in os.listdir(args.pcap_csv_folder):
if filename.endswith(".csv") and "tcp" in filename:
@@ -90,65 +85,37 @@ if __name__ == "__main__":
right_index=True,
left_index=True,
)
transmission_df = transmission_df.rename(columns={"PCID": "lte_pcid", "PCID.1": "nr_pcid"})

# transmission timeline

scaley = 1.5
scalex = 1.0
ax0 = plt.subplot(211)
plt.title("{} with {}".format(transmission_direction, cc_algo))
fig, ax = plt.subplots(2, 1, figsize=[6.4 * scaley, 4.8 * scalex])
fig.subplots_adjust(right=0.75)
ax0 = ax[0]
ax1 = ax0.twinx()
ax2 = ax0.twinx()
ax2.spines.right.set_position(("axes", 3))

ax00 = plt.subplot(212)
ax00 = ax[1]
ax01 = ax00.twinx()

plt.title("{} with {}".format(transmission_direction, cc_algo))
transmission_df["lte_handovers"] = transmission_df["lte_pcid"].diff()


lte_handovers = transmission_df[transmission_df.lte_pcid.diff() != 0].index.values
nr_handovers = transmission_df[transmission_df.nr_pcid.diff() != 0].index.values

# create list fo color indices for lte cells
color_dict = dict()
color_list = list()
i = 0
for cell_id in transmission_df["PCID"]:
if cell_id not in color_dict:
color_dict[cell_id] = i
i += 1
color_list.append(color_dict[cell_id])

transmission_df["lte_cell_color"] = color_list
color_dict = None
color_list = None

cmap = matplotlib.cm.get_cmap("Set3")
unique_cells = transmission_df["lte_cell_color"].unique()
color_list = cmap.colors * (round(len(unique_cells) / len(cmap.colors)) + 1)

transmission_df["index"] = transmission_df.index
for c in transmission_df["lte_cell_color"].unique():
bounds = transmission_df[["index", "lte_cell_color"]].groupby("lte_cell_color").agg(["min", "max"]).loc[
c]
ax0.axvspan(bounds.min(), bounds.max(), alpha=0.1, color=color_list[c])

# create list fo color indices for nr cells
color_dict = dict()
color_list = list()
i = 0
for cell_id in transmission_df["PCID.1"]:
if cell_id not in color_dict:
color_dict[cell_id] = i
i += 1
color_list.append(color_dict[cell_id])

transmission_df["nr_cell_color"] = color_list
color_dict = None
color_list = None

cmap = matplotlib.cm.get_cmap("Set3")
unique_cells = transmission_df["nr_cell_color"].unique()
color_list = cmap.colors * (round(len(unique_cells) / len(cmap.colors)) + 1)

for c in transmission_df["nr_cell_color"].unique():
bounds = transmission_df[["index", "nr_cell_color"]].groupby("nr_cell_color").agg(["min", "max"]).loc[c]
ax00.axvspan(bounds.min(), bounds.max(), alpha=0.1, color=color_list[c])
print(transmission_df["lte_handovers"])
print(len(transmission_df["lte_handovers"]))
continue

# Plot vertical lines
for item in lte_handovers[1::]:
ax00.axvline(item, ymin=0, ymax=1, color='red')
for item in nr_handovers[1::]:
ax00.axvline(item, ymin=0, ymax=1, color='red')

ax0.plot(transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd")
ax1.plot(transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT")
@@ -156,11 +123,25 @@ if __name__ == "__main__":
ax00.plot(transmission_df["downlink_cqi"].dropna(), color="magenta", linestyle="dotted", label="CQI")
ax01.plot(transmission_df["DL_bandwidth"].dropna(), color="peru", linestyle="dotted", label="DL_bandwidth")

if args.save:
plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", "")))
ax2.spines.right.set_position(("axes", 1.1))

ax0.set_ylim(0, 5000)
ax1.set_ylim(0, 0.3)
ax2.set_ylim(0, 500)
ax00.set_ylim(0, 16)
ax01.set_ylim(0, 21)

ax00.set_xlabel("arrival time")
ax2.set_ylabel("Goodput [mbps]")
ax00.set_ylabel("CQI")
ax1.set_ylabel("sRTT [s]")
ax0.set_ylabel("cwnd")
ax01.set_ylabel("Bandwidth [MHz]")

plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", "")))
#except Exception as e:
# print("Error processing file: {}".format(csv))
# print(str(e))
counter += 1

plt.clf()
plt.clf()

Loading…
Peruuta
Tallenna