| @@ -13,7 +13,7 @@ if __name__ == "__main__": | |||
| parser = ArgumentParser() | |||
| parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.") | |||
| parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.") | |||
| parser.add_argument("--save", default=None, help="Location to save pdf file.") | |||
| parser.add_argument("--save", required=True, help="Location to save pdf file.") | |||
| parser.add_argument( | |||
| "-i", | |||
| "--interval", | |||
| @@ -23,12 +23,7 @@ if __name__ == "__main__": | |||
| ) | |||
| args = parser.parse_args() | |||
| manager = multiprocessing.Manager() | |||
| n = manager.Value("i", 0) | |||
| frame_list = manager.list() | |||
| jobs = [] | |||
| # load all pcap csv into one dataframe | |||
| pcap_csv_list = list() | |||
| for filename in os.listdir(args.pcap_csv_folder): | |||
| if filename.endswith(".csv") and "tcp" in filename: | |||
| @@ -90,65 +85,37 @@ if __name__ == "__main__": | |||
| right_index=True, | |||
| left_index=True, | |||
| ) | |||
| transmission_df = transmission_df.rename(columns={"PCID": "lte_pcid", "PCID.1": "nr_pcid"}) | |||
| # transmission timeline | |||
| scaley = 1.5 | |||
| scalex = 1.0 | |||
| ax0 = plt.subplot(211) | |||
| plt.title("{} with {}".format(transmission_direction, cc_algo)) | |||
| fig, ax = plt.subplots(2, 1, figsize=[6.4 * scaley, 4.8 * scalex]) | |||
| fig.subplots_adjust(right=0.75) | |||
| ax0 = ax[0] | |||
| ax1 = ax0.twinx() | |||
| ax2 = ax0.twinx() | |||
| ax2.spines.right.set_position(("axes", 3)) | |||
| ax00 = plt.subplot(212) | |||
| ax00 = ax[1] | |||
| ax01 = ax00.twinx() | |||
| plt.title("{} with {}".format(transmission_direction, cc_algo)) | |||
| transmission_df["lte_handovers"] = transmission_df["lte_pcid"].diff() | |||
| lte_handovers = transmission_df[transmission_df.lte_pcid.diff() != 0].index.values | |||
| nr_handovers = transmission_df[transmission_df.nr_pcid.diff() != 0].index.values | |||
| # create list fo color indices for lte cells | |||
| color_dict = dict() | |||
| color_list = list() | |||
| i = 0 | |||
| for cell_id in transmission_df["PCID"]: | |||
| if cell_id not in color_dict: | |||
| color_dict[cell_id] = i | |||
| i += 1 | |||
| color_list.append(color_dict[cell_id]) | |||
| transmission_df["lte_cell_color"] = color_list | |||
| color_dict = None | |||
| color_list = None | |||
| cmap = matplotlib.cm.get_cmap("Set3") | |||
| unique_cells = transmission_df["lte_cell_color"].unique() | |||
| color_list = cmap.colors * (round(len(unique_cells) / len(cmap.colors)) + 1) | |||
| transmission_df["index"] = transmission_df.index | |||
| for c in transmission_df["lte_cell_color"].unique(): | |||
| bounds = transmission_df[["index", "lte_cell_color"]].groupby("lte_cell_color").agg(["min", "max"]).loc[ | |||
| c] | |||
| ax0.axvspan(bounds.min(), bounds.max(), alpha=0.1, color=color_list[c]) | |||
| # create list fo color indices for nr cells | |||
| color_dict = dict() | |||
| color_list = list() | |||
| i = 0 | |||
| for cell_id in transmission_df["PCID.1"]: | |||
| if cell_id not in color_dict: | |||
| color_dict[cell_id] = i | |||
| i += 1 | |||
| color_list.append(color_dict[cell_id]) | |||
| transmission_df["nr_cell_color"] = color_list | |||
| color_dict = None | |||
| color_list = None | |||
| cmap = matplotlib.cm.get_cmap("Set3") | |||
| unique_cells = transmission_df["nr_cell_color"].unique() | |||
| color_list = cmap.colors * (round(len(unique_cells) / len(cmap.colors)) + 1) | |||
| for c in transmission_df["nr_cell_color"].unique(): | |||
| bounds = transmission_df[["index", "nr_cell_color"]].groupby("nr_cell_color").agg(["min", "max"]).loc[c] | |||
| ax00.axvspan(bounds.min(), bounds.max(), alpha=0.1, color=color_list[c]) | |||
| print(transmission_df["lte_handovers"]) | |||
| print(len(transmission_df["lte_handovers"])) | |||
| continue | |||
| # Plot vertical lines | |||
| for item in lte_handovers[1::]: | |||
| ax00.axvline(item, ymin=0, ymax=1, color='red') | |||
| for item in nr_handovers[1::]: | |||
| ax00.axvline(item, ymin=0, ymax=1, color='red') | |||
| ax0.plot(transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd") | |||
| ax1.plot(transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT") | |||
| @@ -156,11 +123,25 @@ if __name__ == "__main__": | |||
| ax00.plot(transmission_df["downlink_cqi"].dropna(), color="magenta", linestyle="dotted", label="CQI") | |||
| ax01.plot(transmission_df["DL_bandwidth"].dropna(), color="peru", linestyle="dotted", label="DL_bandwidth") | |||
| if args.save: | |||
| plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", ""))) | |||
| ax2.spines.right.set_position(("axes", 1.1)) | |||
| ax0.set_ylim(0, 5000) | |||
| ax1.set_ylim(0, 0.3) | |||
| ax2.set_ylim(0, 500) | |||
| ax00.set_ylim(0, 16) | |||
| ax01.set_ylim(0, 21) | |||
| ax00.set_xlabel("arrival time") | |||
| ax2.set_ylabel("Goodput [mbps]") | |||
| ax00.set_ylabel("CQI") | |||
| ax1.set_ylabel("sRTT [s]") | |||
| ax0.set_ylabel("cwnd") | |||
| ax01.set_ylabel("Bandwidth [MHz]") | |||
| plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", ""))) | |||
| #except Exception as e: | |||
| # print("Error processing file: {}".format(csv)) | |||
| # print(str(e)) | |||
| counter += 1 | |||
| plt.clf() | |||
| plt.clf() | |||