| parser = ArgumentParser() | parser = ArgumentParser() | ||||
| parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.") | parser.add_argument("-s", "--serial_file", required=True, help="Serial csv file.") | ||||
| parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.") | parser.add_argument("-p", "--pcap_csv_folder", required=True, help="PCAP csv folder.") | ||||
| parser.add_argument("--save", default=None, help="Location to save pdf file.") | |||||
| parser.add_argument("--save", required=True, help="Location to save pdf file.") | |||||
| parser.add_argument( | parser.add_argument( | ||||
| "-i", | "-i", | ||||
| "--interval", | "--interval", | ||||
| ) | ) | ||||
| args = parser.parse_args() | args = parser.parse_args() | ||||
| manager = multiprocessing.Manager() | |||||
| n = manager.Value("i", 0) | |||||
| frame_list = manager.list() | |||||
| jobs = [] | |||||
| # load all pcap csv into one dataframe | |||||
| pcap_csv_list = list() | pcap_csv_list = list() | ||||
| for filename in os.listdir(args.pcap_csv_folder): | for filename in os.listdir(args.pcap_csv_folder): | ||||
| if filename.endswith(".csv") and "tcp" in filename: | if filename.endswith(".csv") and "tcp" in filename: | ||||
| right_index=True, | right_index=True, | ||||
| left_index=True, | left_index=True, | ||||
| ) | ) | ||||
| transmission_df = transmission_df.rename(columns={"PCID": "lte_pcid", "PCID.1": "nr_pcid"}) | |||||
| # transmission timeline | # transmission timeline | ||||
| scaley = 1.5 | scaley = 1.5 | ||||
| scalex = 1.0 | scalex = 1.0 | ||||
| ax0 = plt.subplot(211) | |||||
| plt.title("{} with {}".format(transmission_direction, cc_algo)) | |||||
| fig, ax = plt.subplots(2, 1, figsize=[6.4 * scaley, 4.8 * scalex]) | |||||
| fig.subplots_adjust(right=0.75) | |||||
| ax0 = ax[0] | |||||
| ax1 = ax0.twinx() | ax1 = ax0.twinx() | ||||
| ax2 = ax0.twinx() | ax2 = ax0.twinx() | ||||
| ax2.spines.right.set_position(("axes", 3)) | |||||
| ax00 = plt.subplot(212) | |||||
| ax00 = ax[1] | |||||
| ax01 = ax00.twinx() | ax01 = ax00.twinx() | ||||
| plt.title("{} with {}".format(transmission_direction, cc_algo)) | |||||
| transmission_df["lte_handovers"] = transmission_df["lte_pcid"].diff() | |||||
| lte_handovers = transmission_df[transmission_df.lte_pcid.diff() != 0].index.values | |||||
| nr_handovers = transmission_df[transmission_df.nr_pcid.diff() != 0].index.values | |||||
| # create list fo color indices for lte cells | |||||
| color_dict = dict() | |||||
| color_list = list() | |||||
| i = 0 | |||||
| for cell_id in transmission_df["PCID"]: | |||||
| if cell_id not in color_dict: | |||||
| color_dict[cell_id] = i | |||||
| i += 1 | |||||
| color_list.append(color_dict[cell_id]) | |||||
| transmission_df["lte_cell_color"] = color_list | |||||
| color_dict = None | |||||
| color_list = None | |||||
| cmap = matplotlib.cm.get_cmap("Set3") | |||||
| unique_cells = transmission_df["lte_cell_color"].unique() | |||||
| color_list = cmap.colors * (round(len(unique_cells) / len(cmap.colors)) + 1) | |||||
| transmission_df["index"] = transmission_df.index | |||||
| for c in transmission_df["lte_cell_color"].unique(): | |||||
| bounds = transmission_df[["index", "lte_cell_color"]].groupby("lte_cell_color").agg(["min", "max"]).loc[ | |||||
| c] | |||||
| ax0.axvspan(bounds.min(), bounds.max(), alpha=0.1, color=color_list[c]) | |||||
| # create list fo color indices for nr cells | |||||
| color_dict = dict() | |||||
| color_list = list() | |||||
| i = 0 | |||||
| for cell_id in transmission_df["PCID.1"]: | |||||
| if cell_id not in color_dict: | |||||
| color_dict[cell_id] = i | |||||
| i += 1 | |||||
| color_list.append(color_dict[cell_id]) | |||||
| transmission_df["nr_cell_color"] = color_list | |||||
| color_dict = None | |||||
| color_list = None | |||||
| cmap = matplotlib.cm.get_cmap("Set3") | |||||
| unique_cells = transmission_df["nr_cell_color"].unique() | |||||
| color_list = cmap.colors * (round(len(unique_cells) / len(cmap.colors)) + 1) | |||||
| for c in transmission_df["nr_cell_color"].unique(): | |||||
| bounds = transmission_df[["index", "nr_cell_color"]].groupby("nr_cell_color").agg(["min", "max"]).loc[c] | |||||
| ax00.axvspan(bounds.min(), bounds.max(), alpha=0.1, color=color_list[c]) | |||||
| print(transmission_df["lte_handovers"]) | |||||
| print(len(transmission_df["lte_handovers"])) | |||||
| continue | |||||
| # Plot vertical lines | |||||
| for item in lte_handovers[1::]: | |||||
| ax00.axvline(item, ymin=0, ymax=1, color='red') | |||||
| for item in nr_handovers[1::]: | |||||
| ax00.axvline(item, ymin=0, ymax=1, color='red') | |||||
| ax0.plot(transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd") | ax0.plot(transmission_df["snd_cwnd"].dropna(), color="lime", linestyle="dashed", label="cwnd") | ||||
| ax1.plot(transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT") | ax1.plot(transmission_df["srtt"].dropna(), color="red", linestyle="dashdot", label="sRTT") | ||||
| ax00.plot(transmission_df["downlink_cqi"].dropna(), color="magenta", linestyle="dotted", label="CQI") | ax00.plot(transmission_df["downlink_cqi"].dropna(), color="magenta", linestyle="dotted", label="CQI") | ||||
| ax01.plot(transmission_df["DL_bandwidth"].dropna(), color="peru", linestyle="dotted", label="DL_bandwidth") | ax01.plot(transmission_df["DL_bandwidth"].dropna(), color="peru", linestyle="dotted", label="DL_bandwidth") | ||||
| if args.save: | |||||
| plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", ""))) | |||||
| ax2.spines.right.set_position(("axes", 1.1)) | |||||
| ax0.set_ylim(0, 5000) | |||||
| ax1.set_ylim(0, 0.3) | |||||
| ax2.set_ylim(0, 500) | |||||
| ax00.set_ylim(0, 16) | |||||
| ax01.set_ylim(0, 21) | |||||
| ax00.set_xlabel("arrival time") | |||||
| ax2.set_ylabel("Goodput [mbps]") | |||||
| ax00.set_ylabel("CQI") | |||||
| ax1.set_ylabel("sRTT [s]") | |||||
| ax0.set_ylabel("cwnd") | |||||
| ax01.set_ylabel("Bandwidth [MHz]") | |||||
| plt.savefig("{}{}_plot.pdf".format(args.save, csv.replace(".csv", ""))) | |||||
| #except Exception as e: | #except Exception as e: | ||||
| # print("Error processing file: {}".format(csv)) | # print("Error processing file: {}".format(csv)) | ||||
| # print(str(e)) | # print(str(e)) | ||||
| counter += 1 | counter += 1 | ||||
| plt.clf() | |||||
| plt.clf() |